初二下数学期末试卷(附答案)
展开全部
这篇关于初二下数学期末试卷(附答案),是 考 网特地为大家整理的,希望对大家有所帮助!
一、选择题(本大题共8小题,每小题3分,共24分)
每题给出四个答案,其中只有一个符合题目的要求,把选出的答案编号填在下表中.
题号 1 2 3 4 5 6 7 8
答案
1.在式子 , , , , , 中,分式的个数是
A.5 B.4 C.3 D.2
2.反比例函数 的图像经过点 ,则该函数的图像在
A. 第一、三象限 B.第二、四象限 C. 第一、二象限 D. 第三、四象限
3.在下列性质中,平行四边形不一定具有的性质是
A.对边相等 B.对边平行 C. 对角互补 D.内角和为3600
4. 菱形 的两条对角线长分别为 和 ,则它的周长和面积分别为
A. B. C. D.
5.函数 的图像上有两点 , ,若 0﹤ ﹤ ,则
A. ﹤ B. ﹥ C. = D. , 的大小关系不能确定
6.在下列各组数据中,可以构成直角三角形的是
A. 0.2,0.3,0.4 B. , , C. 40,41,90 D. 5,6,7
7.样本数据是3,6,10,4,2,则这个样本的方差是
A.8 B.5 C.3 D.
8. 如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB= ,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;
④BO⊥CD,其中正确的是
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
二、填空题:(本大题共8小题,每小题3分,共24分)
9.生物学家发现一种病毒的长度约为0.00000043mm,用科学记数法表示这个数的结果
为 .
10. 若 的值为零, 则 的值是 .
11. 数据1,2,8,5,3,9,5,4,5,4的众数是_________,中位数是__________.
12. 若□ABCD的周长为100cm,两条对角线相交于点O,△AOB的周长比△BOC的周长多10cm,那么AB= cm,BC= cm.
13. 若关于 的分式方程 无解,则常数 的值为 .
14.若函数 是反比例函数,则 的值为________________.
15.已知等腰梯形的一个底角为600,它的两底边分别长10cm、16cm,则等腰梯形的周长是_____________________.
16.如图,将矩形 沿直线 折叠,顶点 恰好落在 边上 点处,已知 , ,则图中阴影部分面积为 __.
三、(本大题共3小题,每小题6分,共18分)
17.先化简 ,再取一个你认为合理的x值,代入求原式的值.
18. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
(1)使三角形三边长为3, , 。
(2)使平行四边形有一锐角为45°,且面积为4。
(1) (2)
19. 北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心。无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:
信息一:(1)班共捐款540元,(2)班共捐款480元.
信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的 .
信息三:(1)班比(2)班少3人.
请你根据以上信息,求出八(1)班平均每人捐款多少元?
四.(本大题共2小题,每小题8分,共16分)
20. 如图,在四边形ABCD中,∠B =90°,AB= ,
∠BAC =30°,CD=2,AD= ,求∠ACD的度数。
21.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使 ;
(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据数学道理是:
;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: 。
五、(本大题共2小题,每小题9分,共18分)
22. 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:
1号 2号 3号 4号 5号 总分
甲班 100 98 110 89 103 500
乙班 86 100 98 119 97 500
(1)根据上表提供的数据填写下表:
优秀率 中位数 方差
甲班
乙班
(2)根据以上信息,你认为应该把冠军奖状发给哪一个班级? 简述理由.
23. 如图,梯形 中, 且 , 、 分别是两底的中点,连结 ,若 ,求 的长。
六、(本大题共2小题,每小题10分,共20分)
24. 如图,一次函数 的图像与反比例函数 的图像交于 两点,与 轴交于点 ,与 轴交于点 ,已知 ,点 的坐标为 ,过点 作 轴,垂足为 。
(1)求反比例函数和一次函数的解析式;
(2)求 的面积。
(3)根据图像回答:当x 为何值时,一次函数的函数值大于
反比例函数的函数值?
25. 如图16,在直角梯形ABCD中,AD∥BC, ,AD = 6,BC = 8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.
设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到值,请回答:该值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
2011-2012年学年度下学期期末质量检测
八年级数学试题答案
一、选择题(每小题3分,共24分)
1-4. CBCB 5-8.ACAD
二、填空(每小题3分,共24分)
9. 10. 3 11. 5,4. 2. 12. 30,20
13. 2 14. 2 15. 38cm 16. 30cm2
17、解: = …………(1分)
= = …………………………(3分)
= ……………………………………………………………………(4分)
因为 x≠+1、-1、0。所以可以取x=2。…………………………(5分)
原式= …………………………………………………………………………(6分)
18、每小题3分,略
19、解:设八(1)班每人捐款 元,则八(2)班每人捐 元.……………………1分
则 …………………………………3分
去分母得
解得 ……………………………………4分
检验: …………………………………………………5分
答:略 …………………………………………………6分
20、解:因为∠B =90°,AB= ,∠BAC =30°
设BC= , 则AC= ………………………………(1分)
所以AC2=AB2+BC2 ………………………(3分)
所以解得x=1, 所以AC=2…………………(4分)
又因为CD=2,AD=2 ;22+22=
所以AD2=AC2+DC2…………………(6分)
所以△ACD为等腰直角三角形…………(7分)
所以∠ACD=900. …………………(8分)
21、解:(2)平行四边形,两组对边分别相等的四边形是平行四边形
(3)矩形,有一个角是直角的平行四边形是矩形 (每空2分)
22、(1)每空1分 …… …… …… …… 6分
优秀率 中位数 方差
甲班 60% 100 46.8
乙班 40% 98 114
(2)答; 应该把冠军奖状发给甲班。 …… …… …… …… …… 7分
理由:根据以上信息,甲班的优秀率和中位数都比乙班高,而方差却比乙班小,说明甲班参赛学生的整体水平比乙班好,所以应该把冠军奖状发给甲班。
…… …… …… …… …… 9分
23、解:过点 分别作 交 于 (如图)
…… …… …… …… …… 2分
即 是直角三角形。 …… 3分
, 四边形 、 都是平行四边形
…… ……5分
在 中, …… ……6分
又 、 分别是两底的中点 …… ……7分
即 是 斜边的中线 ……8分
…… ………… ………… ………… …… ……9分
(2)
= …(8分)
(3)
…… ………… …… …… …… …… …… …… …… ……(10分)
25、解:(1) …… …… …… ………… …… …… …… (2分)
(2)当BP = 1时,有两种情形:
①如图,若点P从点M向点B运动,有 MB = = 4,MP = MQ = 3,
∴PQ = 6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴ .
∵AB = ,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为 . …… …… …… (5分)
②若点P从点B向点M运动,由题意得 .
PQ = BM + MQ BP = 8,PC = 7.设PE与AD交于点F,QE与AD或AD的延长线交于点G,过点P作PH⊥AD于点H,
则HP = ,AH = 1.在Rt△HPF中,∠HPF = 30°,
∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,
∴点G与点D重合,如图.此时△EPQ与梯形ABCD
的重叠部分就是梯形FPCG,其面积为 .…… …… (8分)
(3)能. …… …… …… …… (10分)
一、选择题(本大题共8小题,每小题3分,共24分)
每题给出四个答案,其中只有一个符合题目的要求,把选出的答案编号填在下表中.
题号 1 2 3 4 5 6 7 8
答案
1.在式子 , , , , , 中,分式的个数是
A.5 B.4 C.3 D.2
2.反比例函数 的图像经过点 ,则该函数的图像在
A. 第一、三象限 B.第二、四象限 C. 第一、二象限 D. 第三、四象限
3.在下列性质中,平行四边形不一定具有的性质是
A.对边相等 B.对边平行 C. 对角互补 D.内角和为3600
4. 菱形 的两条对角线长分别为 和 ,则它的周长和面积分别为
A. B. C. D.
5.函数 的图像上有两点 , ,若 0﹤ ﹤ ,则
A. ﹤ B. ﹥ C. = D. , 的大小关系不能确定
6.在下列各组数据中,可以构成直角三角形的是
A. 0.2,0.3,0.4 B. , , C. 40,41,90 D. 5,6,7
7.样本数据是3,6,10,4,2,则这个样本的方差是
A.8 B.5 C.3 D.
8. 如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB= ,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;
④BO⊥CD,其中正确的是
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
二、填空题:(本大题共8小题,每小题3分,共24分)
9.生物学家发现一种病毒的长度约为0.00000043mm,用科学记数法表示这个数的结果
为 .
10. 若 的值为零, 则 的值是 .
11. 数据1,2,8,5,3,9,5,4,5,4的众数是_________,中位数是__________.
12. 若□ABCD的周长为100cm,两条对角线相交于点O,△AOB的周长比△BOC的周长多10cm,那么AB= cm,BC= cm.
13. 若关于 的分式方程 无解,则常数 的值为 .
14.若函数 是反比例函数,则 的值为________________.
15.已知等腰梯形的一个底角为600,它的两底边分别长10cm、16cm,则等腰梯形的周长是_____________________.
16.如图,将矩形 沿直线 折叠,顶点 恰好落在 边上 点处,已知 , ,则图中阴影部分面积为 __.
三、(本大题共3小题,每小题6分,共18分)
17.先化简 ,再取一个你认为合理的x值,代入求原式的值.
18. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
(1)使三角形三边长为3, , 。
(2)使平行四边形有一锐角为45°,且面积为4。
(1) (2)
19. 北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心。无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:
信息一:(1)班共捐款540元,(2)班共捐款480元.
信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的 .
信息三:(1)班比(2)班少3人.
请你根据以上信息,求出八(1)班平均每人捐款多少元?
四.(本大题共2小题,每小题8分,共16分)
20. 如图,在四边形ABCD中,∠B =90°,AB= ,
∠BAC =30°,CD=2,AD= ,求∠ACD的度数。
21.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使 ;
(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据数学道理是:
;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: 。
五、(本大题共2小题,每小题9分,共18分)
22. 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:
1号 2号 3号 4号 5号 总分
甲班 100 98 110 89 103 500
乙班 86 100 98 119 97 500
(1)根据上表提供的数据填写下表:
优秀率 中位数 方差
甲班
乙班
(2)根据以上信息,你认为应该把冠军奖状发给哪一个班级? 简述理由.
23. 如图,梯形 中, 且 , 、 分别是两底的中点,连结 ,若 ,求 的长。
六、(本大题共2小题,每小题10分,共20分)
24. 如图,一次函数 的图像与反比例函数 的图像交于 两点,与 轴交于点 ,与 轴交于点 ,已知 ,点 的坐标为 ,过点 作 轴,垂足为 。
(1)求反比例函数和一次函数的解析式;
(2)求 的面积。
(3)根据图像回答:当x 为何值时,一次函数的函数值大于
反比例函数的函数值?
25. 如图16,在直角梯形ABCD中,AD∥BC, ,AD = 6,BC = 8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.
设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到值,请回答:该值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
2011-2012年学年度下学期期末质量检测
八年级数学试题答案
一、选择题(每小题3分,共24分)
1-4. CBCB 5-8.ACAD
二、填空(每小题3分,共24分)
9. 10. 3 11. 5,4. 2. 12. 30,20
13. 2 14. 2 15. 38cm 16. 30cm2
17、解: = …………(1分)
= = …………………………(3分)
= ……………………………………………………………………(4分)
因为 x≠+1、-1、0。所以可以取x=2。…………………………(5分)
原式= …………………………………………………………………………(6分)
18、每小题3分,略
19、解:设八(1)班每人捐款 元,则八(2)班每人捐 元.……………………1分
则 …………………………………3分
去分母得
解得 ……………………………………4分
检验: …………………………………………………5分
答:略 …………………………………………………6分
20、解:因为∠B =90°,AB= ,∠BAC =30°
设BC= , 则AC= ………………………………(1分)
所以AC2=AB2+BC2 ………………………(3分)
所以解得x=1, 所以AC=2…………………(4分)
又因为CD=2,AD=2 ;22+22=
所以AD2=AC2+DC2…………………(6分)
所以△ACD为等腰直角三角形…………(7分)
所以∠ACD=900. …………………(8分)
21、解:(2)平行四边形,两组对边分别相等的四边形是平行四边形
(3)矩形,有一个角是直角的平行四边形是矩形 (每空2分)
22、(1)每空1分 …… …… …… …… 6分
优秀率 中位数 方差
甲班 60% 100 46.8
乙班 40% 98 114
(2)答; 应该把冠军奖状发给甲班。 …… …… …… …… …… 7分
理由:根据以上信息,甲班的优秀率和中位数都比乙班高,而方差却比乙班小,说明甲班参赛学生的整体水平比乙班好,所以应该把冠军奖状发给甲班。
…… …… …… …… …… 9分
23、解:过点 分别作 交 于 (如图)
…… …… …… …… …… 2分
即 是直角三角形。 …… 3分
, 四边形 、 都是平行四边形
…… ……5分
在 中, …… ……6分
又 、 分别是两底的中点 …… ……7分
即 是 斜边的中线 ……8分
…… ………… ………… ………… …… ……9分
(2)
= …(8分)
(3)
…… ………… …… …… …… …… …… …… …… ……(10分)
25、解:(1) …… …… …… ………… …… …… …… (2分)
(2)当BP = 1时,有两种情形:
①如图,若点P从点M向点B运动,有 MB = = 4,MP = MQ = 3,
∴PQ = 6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴ .
∵AB = ,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为 . …… …… …… (5分)
②若点P从点B向点M运动,由题意得 .
PQ = BM + MQ BP = 8,PC = 7.设PE与AD交于点F,QE与AD或AD的延长线交于点G,过点P作PH⊥AD于点H,
则HP = ,AH = 1.在Rt△HPF中,∠HPF = 30°,
∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,
∴点G与点D重合,如图.此时△EPQ与梯形ABCD
的重叠部分就是梯形FPCG,其面积为 .…… …… (8分)
(3)能. …… …… …… …… (10分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询