求助,高数极限题!
展开全部
令 u(n) = (n!开n次方) / n = (n!)^(1/n) /n = [n! / (n^n) ]^(1/n)
ln u(n) = (1/n) [ ln(1/n) + ln(2/n) + ... + ln(n-1)/n + ln(n/n) ]
lim(n->∞) ln u(n) = ∫[0,1] lnx dx 化为 lnx 在【0,1】上的广义积分
= (x*lnx - x) | [0,1] = -1
于是 lim(n->∞) u(n) = e^(-1) = 1/e
所求极限 lim(n->∞) 1/u(n) = e
ln u(n) = (1/n) [ ln(1/n) + ln(2/n) + ... + ln(n-1)/n + ln(n/n) ]
lim(n->∞) ln u(n) = ∫[0,1] lnx dx 化为 lnx 在【0,1】上的广义积分
= (x*lnx - x) | [0,1] = -1
于是 lim(n->∞) u(n) = e^(-1) = 1/e
所求极限 lim(n->∞) 1/u(n) = e
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询