如何用均值不等式证明一个三元不等式?

 我来答
见佛有真如c
高粉答主

2023-07-02 · 说的都是干货,快来关注
知道小有建树答主
回答量:4743
采纳率:100%
帮助的人:101万
展开全部

三元均值不等式如下:

定理1:如果a,b,c∈R,那么a³+b³+c³≥3abc,当且仅当a=b=c时,等号成立。

定理2:如果a,b,c∈R+,那么(a+b+c)/3≥³√(abc),当且仅当a=b=c时,等号成立。结论:设x,y,z都是正数,则有:

(1)若xyz=S(定值),则当x=y=z时,x+y+z有最小值3³√S。

(2)若x+y+z=P(定值),则当x=y=z时,xyz有最大值P³/27。记忆:“一正、二定、三相等”。

不等式的特殊性质有以下三种:

①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。

②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。

③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式