解决两道大学物理题

1.质点沿X轴正向运动,加速度a=-kv(k为常数),设从原点出发时速度为V0,求运动方程x=x(t)。2、跳水运动员自10m跳台自由下落,入水后因受水的阻碍而减速,设加... 1.质点沿X轴正向运动,加速度a=-kv(k为常数),设从原点出发时速度为V0,求运动方程x=x(t)。

2、跳水运动员自10m跳台自由下落,入水后因受水的阻碍而减速,设加速度a=-kv²,k=0.4m的负一次方,求运动员速度减为入水速度的10%时的入水深度。

这两题都是大学物理学上海交通大学版第四版的题目,分别是习题1里的第14,15题。求高手把过程写给我看。
展开
王者农药老司机bt6h
2013-03-06 · TA获得超过933个赞
知道小有建树答主
回答量:244
采纳率:0%
帮助的人:333万
展开全部
解:1.因为a=-kv
所以dv/dt=-kv
所以-dv/kv=dt
两边积分,得(-1/k)ln(V/V0)=t
所以v=v0e^(-kt)
再对dt积分得x=∫v0e^(-kt)dt=-(v0/k)e^(-kt)+c
由于初始时刻质点在原点,t=0时x=0,解得c=(v0/k)
所以运动方程x=-(v0/k)e^(-kt)+(v0/k)
2.因为a=-kv²
所以dv/dt=-kv²
所以-dv/kv²=dt
两边积分,得v=kv0/(k+v0t)
再对dt积分得x=∫kv0/(k+v0t)dt
=kln((k+v0t)/k)+c
由于初始时刻人在水面,t=0时x=0,解得c=0
所以运动方程x=kln((k+v0t)/k)
由能量守恒求出v0=根号(2gh)=14米每秒
令v=kv0/(k+v0t)中的v=0.1v0,解得t=0.257秒
代入运动方程得x=0.92米

希望对你有所帮助!我打字打了好久,望采纳!
追问
第一题对的,第二题答案是5.76m啊,能再看看嘛?
追答
哦,积分没化简对。
2.
a=-kv²

所以dv/dt=-kv²
∴dv/v²=-kdt
∴1/v0-1/v=-kt
所以v=v0/(v0kt+1)
所以dx/dt=v0/(v0kt+1)
所以x=∫v0/(v0kt+1)dt
=(1/k)ln(v0kt+1)+c
由于初始时刻人在水面,t=0时x=0,解得c=0
所以x=(1/k)ln(v0kt+1)
由能量守恒求出v0=根号(2gh)=14米每秒
令v=v0/(v0kt+1)中的v=0.1v0,解得t=1.607秒
代入x=(1/k)ln(v0kt+1)得x=5.756米!
终于算对了!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式