展开全部
(1)
e=(根2)/2, a^2=2c^2=b^2+c^2
所以b=c=a*(根2)/2
M(0,b),F(b,0),B(b*根2,0)
向量MF(b,-b),FB(b*(根2-1),0)
MF*MB=(根2-1)*b^2=根2-1
b=1
a=根2
x^2/2+y^2=1
(2)
F为垂心,所以MF垂直于PQ.MF斜率为-1,所以PQ斜率为1
设PQ方程为:y=x+n,P(x1,y1);Q(x2,y2)
代入椭圆得:3x^2+4nx+2n^2-2=0
x1+x2=-4n/3,x1x2=(2n^2-2)/3
向量QF(1-x2,-y2),向量MP(x1,y1-1)
QF*MP=x1-x1x2-y1y2+y2=x1-x1x2-(x1+n)(x2+n)+x2+n=(1-n)(x1+x2)-2x1x2-n^2+n=0
解得n=1或N=-4/3
当n=1时,PQ过点M,不构成三角形,舍去。
y=x-4/3
e=(根2)/2, a^2=2c^2=b^2+c^2
所以b=c=a*(根2)/2
M(0,b),F(b,0),B(b*根2,0)
向量MF(b,-b),FB(b*(根2-1),0)
MF*MB=(根2-1)*b^2=根2-1
b=1
a=根2
x^2/2+y^2=1
(2)
F为垂心,所以MF垂直于PQ.MF斜率为-1,所以PQ斜率为1
设PQ方程为:y=x+n,P(x1,y1);Q(x2,y2)
代入椭圆得:3x^2+4nx+2n^2-2=0
x1+x2=-4n/3,x1x2=(2n^2-2)/3
向量QF(1-x2,-y2),向量MP(x1,y1-1)
QF*MP=x1-x1x2-y1y2+y2=x1-x1x2-(x1+n)(x2+n)+x2+n=(1-n)(x1+x2)-2x1x2-n^2+n=0
解得n=1或N=-4/3
当n=1时,PQ过点M,不构成三角形,舍去。
y=x-4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询