解方程(1)X-1/2-1=(2-3X)/3 (2)X-3+(6X-X²)/(x+3)=0
2个回答
展开全部
(1)X-1/2-1=(2-3X)/3
x-3/2=(2-3x)/3(通分)
6x-9=2(2-3x)
6x-9=4-6x
12x=13
x=13/12
验算:
13/12-3/2=(2-3*13/12)÷3
(13-18)/12=(-5/4)×1/3
-5/12=-5/12
(2)X-3+(6X-X²)/(x+3)=0
x-3+(6x-x²)×1/(x+3)=0(通分)
(x-3)(x+3)+(6x-x²)=0
x²-9+6x-x²=0
6x=9
x=3/2
验算
3/2-3+(6*3/2-(3/2)²)÷(3/2+3)=0
-3/2+(9-9/4)÷9/2=0
-3/2+27/4×2/9=0
-3/2+3/2=0
0=0
x-3/2=(2-3x)/3(通分)
6x-9=2(2-3x)
6x-9=4-6x
12x=13
x=13/12
验算:
13/12-3/2=(2-3*13/12)÷3
(13-18)/12=(-5/4)×1/3
-5/12=-5/12
(2)X-3+(6X-X²)/(x+3)=0
x-3+(6x-x²)×1/(x+3)=0(通分)
(x-3)(x+3)+(6x-x²)=0
x²-9+6x-x²=0
6x=9
x=3/2
验算
3/2-3+(6*3/2-(3/2)²)÷(3/2+3)=0
-3/2+(9-9/4)÷9/2=0
-3/2+27/4×2/9=0
-3/2+3/2=0
0=0
展开全部
(1)∵P(1,1)在曲线曲线y=
1
x
,且y'=-
1
x2
∴在点P(1,1)处的切线的斜率k=y'|x=1=-1;
∴曲线在点P(1,1)处的切线方程为y-1=-(x-1),即x+y-2=0.
(2)设曲线线y=
1
x
,过点P(1,0)的切线相切于点A(x0,
1
x0
),
则切线的斜率 k=-
1
x20
,
∴切线方程为y-
1
x0
═-
1
x20
(x-x0),
∵点P(1,0)在切线上,
∴-
1
x0
═-
1
x20
(1-x0),
解得x0=
1
2
故所求的切线方程为4x+y-4=0
1
x
,且y'=-
1
x2
∴在点P(1,1)处的切线的斜率k=y'|x=1=-1;
∴曲线在点P(1,1)处的切线方程为y-1=-(x-1),即x+y-2=0.
(2)设曲线线y=
1
x
,过点P(1,0)的切线相切于点A(x0,
1
x0
),
则切线的斜率 k=-
1
x20
,
∴切线方程为y-
1
x0
═-
1
x20
(x-x0),
∵点P(1,0)在切线上,
∴-
1
x0
═-
1
x20
(1-x0),
解得x0=
1
2
故所求的切线方程为4x+y-4=0
参考资料: http://www.jyeoo.com/math2/ques/detail/8c1ca2ef-ddaa-4dce-93c4-b250d97603b6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询