已知数列an的前n项和Sn满足Sn=2an+(-1)^n(n属于正整数)。 1,求数列an的前三项,

已知数列an的前n项和Sn满足Sn=2an+(-1)^n(n属于正整数)。1,求数列an的前三项,a1,a2和a3。2,求证数列{an+2/3(-1)^n}为等比数列,并... 已知数列an的前n项和Sn满足Sn=2an+(-1)^n(n属于正整数)。
1,求数列an的前三项,a1,a2和a3。
2,求证数列{an+2/3(-1)^n}为等比数列,并求出an的的通项公式。
展开
西域牛仔王4672747
2013-03-08 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30592 获赞数:146330
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
1、a1=S1=2a1-1 ,因此 a1=1 ;
a1+a2=S2=2a2+1 ,解得 a2=0 ;
a1+a2+a3=S3=2a3-1 ,解得 a3=2 。
2、Sn=2an+(-1)^n ,S(n+1)=2a(n+1)+(-1)^(n+1) ,
两式相减,得 a(n+1)=S(n+1)-Sn=2a(n+1)-2an-2(-1)^n ,
因此 a(n+1)+2/3*(-1)^(n+1)=2*[an+2/3*(-1)^n] ,
这说明{an+2/3*(-1)^n}是首项为 a1-2/3=1/3 ,公比为 2 的等比数列,
因此 an+2/3*(-1)^n=1/3*2^(n-1) ,
那么 an=[2^(n-1)+2*(-1)^(n-1)]/3 。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式