
设函数f(x)=【(x+2)²+sinx】/(x²+4)的最大值为M,最小值为m,则M+m=?
1个回答
展开全部
f(x)=【(x+2)²+sinx】/(x²+4)
= 【x² + 4x +4+sinx】/(x²+4)
= 1 + (4x +sinx)/(x²+4)
设x= t时取到最大值M=1 + (4t +sint)/(t²+4)
则x = -t 时取到最小值m =1 + (4(-t) +sin(-t))/((-t)²+4)= 1- (4t +sint)/(t²+4)
所以 M+m = 2
= 【x² + 4x +4+sinx】/(x²+4)
= 1 + (4x +sinx)/(x²+4)
设x= t时取到最大值M=1 + (4t +sint)/(t²+4)
则x = -t 时取到最小值m =1 + (4(-t) +sin(-t))/((-t)²+4)= 1- (4t +sint)/(t²+4)
所以 M+m = 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询