线性代数问题,由逆矩阵定义,对于N阶方阵,若AB=E,则有B=A的逆,那么AB=BA=E,也就有另一
线性代数问题,由逆矩阵定义,对于N阶方阵,若AB=E,则有B=A的逆,那么AB=BA=E,也就有另一个命题成立:若AB=E,则BA=AB。但是我觉得好像只对对称阵成立。请...
线性代数问题,由逆矩阵定义,对于N阶方阵,若AB=E,则有B=A的逆,那么AB=BA=E,也就有另一个命题成立:若AB=E,则BA=AB。 但是我觉得好像只对对称阵成立。请大神帮忙给出不用可逆阵的证明方法,万谢了!
我是说的由可逆阵的定义可以推出:若AB=E,则AB=BA;我只能想到对称阵适合推出的这个结论,然后就想请教一下对于任意满足条件的方阵的证明方法(不用可逆阵的方法证明) 展开
我是说的由可逆阵的定义可以推出:若AB=E,则AB=BA;我只能想到对称阵适合推出的这个结论,然后就想请教一下对于任意满足条件的方阵的证明方法(不用可逆阵的方法证明) 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询