高中不等式问题。已知a,b,c为正实数,且a+b+c=1,求证b/(a+1)+c/(b+1)+a/(c+1)≥3/4

如题。求高手解答!!!... 如题。求高手解答!!! 展开
数星落影
2013-03-09 · 曾经的数竞党,喜欢解答数学题
数星落影
采纳数:379 获赞数:1528

向TA提问 私信TA
展开全部
由柯西不等式
【b/(a+1)+c/(b+1)+a/(c+1)】【ba+b+cb+c+ac+a】大于或等于(a+b+c)^2=1

所以【b/(a+1)+c/(b+1)+a/(c+1)】大于或等于1/【ba+b+cb+c+ac+a】=1/(1+ab+bc+ca)
然后去证明ab+bc+ca小于或等于1/3
因为(ab+bc+ca)小于或等于(a^2+b^2+c^2)
所以3(ab+bc+ca)小于或等于(a^2+b^2+c^2+2ab+2bc+2ca)=(a+b+c)^2=1
所以得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式