1个回答
展开全部
由柯西不等式
【b/(a+1)+c/(b+1)+a/(c+1)】【ba+b+cb+c+ac+a】大于或等于(a+b+c)^2=1
所以【b/(a+1)+c/(b+1)+a/(c+1)】大于或等于1/【ba+b+cb+c+ac+a】=1/(1+ab+bc+ca)
然后去证明ab+bc+ca小于或等于1/3
因为(ab+bc+ca)小于或等于(a^2+b^2+c^2)
所以3(ab+bc+ca)小于或等于(a^2+b^2+c^2+2ab+2bc+2ca)=(a+b+c)^2=1
所以得证
【b/(a+1)+c/(b+1)+a/(c+1)】【ba+b+cb+c+ac+a】大于或等于(a+b+c)^2=1
所以【b/(a+1)+c/(b+1)+a/(c+1)】大于或等于1/【ba+b+cb+c+ac+a】=1/(1+ab+bc+ca)
然后去证明ab+bc+ca小于或等于1/3
因为(ab+bc+ca)小于或等于(a^2+b^2+c^2)
所以3(ab+bc+ca)小于或等于(a^2+b^2+c^2+2ab+2bc+2ca)=(a+b+c)^2=1
所以得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询