如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点。
展开全部
证明:(1)∵∠ACB=∠ECD,
∴∠ACD+∠BCD=∠ACD+∠ACE,
即∠BCD=∠ACE.
∵BC=AC,DC=EC,
∴△ACE≌△BCD.
(2)∵△ACB是
等腰直角三角形
,
∴∠B=∠BAC=45度.
∵△ACE≌△BCD,
∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,
∴
AD2
+AE2=DE2.
由(1)知AE=DB,
∴AD2+
DB2
=DE2.
∴∠ACD+∠BCD=∠ACD+∠ACE,
即∠BCD=∠ACE.
∵BC=AC,DC=EC,
∴△ACE≌△BCD.
(2)∵△ACB是
等腰直角三角形
,
∴∠B=∠BAC=45度.
∵△ACE≌△BCD,
∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,
∴
AD2
+AE2=DE2.
由(1)知AE=DB,
∴AD2+
DB2
=DE2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分别过D、E作关于AC的高DI、EH利用等面积法
S△ACD=½AD·AE;
S△ACD=S△ADM+S△AEM=½[AC·(DH+EI)]
解得AM=(24√2)/7
S△ACD=½AD·AE;
S△ACD=S△ADM+S△AEM=½[AC·(DH+EI)]
解得AM=(24√2)/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询