计算(3+1)(3^2+1)(3^4+1)(3^8+1)+1,结果用幂的形式表示
2个回答
展开全部
(3+1)(3^2+1)(3^4+1)(3^8+1)+1
=1/2(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)+1
=1/2(3^2-1)(3^2+1)(3^4+1)(3^8+1)+1
=1/2(3^4-1)(3^4+1)(3^8+1)+1
=1/2(3^8-1)(3^8+1)+1
=1/2(3^16-1)+1
=1/2×3^16+1/2
连续应用平方差公式(a+b)(a-b)=a²-b²
=1/2(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)+1
=1/2(3^2-1)(3^2+1)(3^4+1)(3^8+1)+1
=1/2(3^4-1)(3^4+1)(3^8+1)+1
=1/2(3^8-1)(3^8+1)+1
=1/2(3^16-1)+1
=1/2×3^16+1/2
连续应用平方差公式(a+b)(a-b)=a²-b²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询