∫(2x+3)/(x^2+3x+1)dx和∫1/(x^2+3x+1)dx结果一样吗?
2个回答
展开全部
∫(2x+3)/(x²+3x+1)dx和∫1/(x²+3x+1)dx结果一样吗?
解:∫(2x+3)/(x²+3x+1)dx=∫d(x²+3x+1)/(x²+3x+1)=ln∣x²+3x+1∣+C...............(1)
∫1/(x²+3x+1)dx=∫dx/[(x+3/2)²-5/4]=(4/5)∫dx/{[2(x+3/2)/√5]²-1}
令2(x+3/2)/√5=u,则(2/√5)dx=du,dx=(√5/2)du,代入上式得:
∫(2x+3)/(x²+3x+1)dx=(4/5)∫(√5/2)du/(u²-1)=(2/√5)∫du/(u+1)(u-1)
=(1/√5)∫[1/(u-1)-1/(u+1)]du=(1/√5)[ln∣u-1∣-ln∣u+1∣]+C
=(1/√5)ln∣(u-1)/(u+1)∣+C=(1/√5)ln{∣2(x+3/2)/√5-1]/[2(x+3/2)/√5+1∣}
=(1/√5)ln∣(2x+3-√5)/(2x+3+√5)∣+C..............(2)
(1)和(2)能一样吗?
解:∫(2x+3)/(x²+3x+1)dx=∫d(x²+3x+1)/(x²+3x+1)=ln∣x²+3x+1∣+C...............(1)
∫1/(x²+3x+1)dx=∫dx/[(x+3/2)²-5/4]=(4/5)∫dx/{[2(x+3/2)/√5]²-1}
令2(x+3/2)/√5=u,则(2/√5)dx=du,dx=(√5/2)du,代入上式得:
∫(2x+3)/(x²+3x+1)dx=(4/5)∫(√5/2)du/(u²-1)=(2/√5)∫du/(u+1)(u-1)
=(1/√5)∫[1/(u-1)-1/(u+1)]du=(1/√5)[ln∣u-1∣-ln∣u+1∣]+C
=(1/√5)ln∣(u-1)/(u+1)∣+C=(1/√5)ln{∣2(x+3/2)/√5-1]/[2(x+3/2)/√5+1∣}
=(1/√5)ln∣(2x+3-√5)/(2x+3+√5)∣+C..............(2)
(1)和(2)能一样吗?
追问
∫1/(x²+3x+1)dx=∫dx/[(x+3/2)²-5/4]=(4/5)∫dx/{[2(x+3/2)/√5]²-1}这一步可以更具体点吗?
追答
∫1/(x²+3x+1)dx=∫dx/[(x+3/2)²-5/4]=∫dx/{(5/4)[(x+3/2)²/(5/4)-1]}【分母上提出常数5/4】
=(4/5)∫dx/[(x+3/2)²/(5/4)-1]【把提出的5/4颠倒后拿到积分符号外边】
=(4/5)∫dx/{[2(x+3/2)/√5]²-1}【其中(x+3/2)²/(5/4)=4(x+3/2)²/5=[2(x+3/2)/√5]²】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询