2个回答
展开全部
设 y=[(1+x)^(1/x)/e]^(1/x),则 lny=(1/x)*ln[(1+x)^(1/x)/e]=(1/x)[(1/x)*ln(1+x)-1]=[ln(1+x)-x]/x²;
{x→+∞}lim{lny} = lim{[ln(1+x)-x]/x²}= lim{[1/(1+x)]-1}/(2x)=-0;
∴ limy=lim{e^lny}=e^(lim{lny})=e^0=1;
{x→0}lim{lny} = lim{[ln(1+x)-x]/x²}= lim{[1/(1+x)]-1}/(2x)= lim{-x/[(1+x)(2x)]}=lim{-1/[2(1+x)]}=-1/2;
∴ limy=lim{e^lny}=e^(lim{lny})=e^(-1/2)=1/√e=√e/e;
{x→+∞}lim{lny} = lim{[ln(1+x)-x]/x²}= lim{[1/(1+x)]-1}/(2x)=-0;
∴ limy=lim{e^lny}=e^(lim{lny})=e^0=1;
{x→0}lim{lny} = lim{[ln(1+x)-x]/x²}= lim{[1/(1+x)]-1}/(2x)= lim{-x/[(1+x)(2x)]}=lim{-1/[2(1+x)]}=-1/2;
∴ limy=lim{e^lny}=e^(lim{lny})=e^(-1/2)=1/√e=√e/e;
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询