函数f(x)=lnx+x²-2ax+a²,a∈R。求f(x)的极值点。 望详解
2个回答
2013-03-13
展开全部
f(x)=lnx+x²-2ax+a²,a∈R
所以 x>0
令 f(x)‘=1/x+2x-2a=0
1+2x²-2ax=0
△=4a²-8
所以 当 a>=根号2 时,x=【a±根号下(a²-2)】/2时,f(x)取得极值,f(x)=带入原函数方程即可;
当 a<= - 根号2时,x=【a±根号下(a²-2)】/2恒小于0,不符合x取值范围;
当 根号2> a>-根号2 时, f(x)‘=0无解,f(x)无极值
所以 x>0
令 f(x)‘=1/x+2x-2a=0
1+2x²-2ax=0
△=4a²-8
所以 当 a>=根号2 时,x=【a±根号下(a²-2)】/2时,f(x)取得极值,f(x)=带入原函数方程即可;
当 a<= - 根号2时,x=【a±根号下(a²-2)】/2恒小于0,不符合x取值范围;
当 根号2> a>-根号2 时, f(x)‘=0无解,f(x)无极值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=lnx+x²-2ax+a²
so. f'(x)=1/x +2x-2a
极值点满足 f'(x)=0,求解方程等价于2x²-2ax+1=0 (*)
△=4a²-8
当a=0时候,f'(x)>0, 函数单调无极值点;
当a∈(-√2,√2)时,(*)无解,函数单调自增,无极值点;
当a=±√2,(*)有两相同实根,极值点唯一为 X=a/
a属于其他情况时,(*)有两不同实根,极值点分别为 X=(2a±√(4a²-8))/4
so. f'(x)=1/x +2x-2a
极值点满足 f'(x)=0,求解方程等价于2x²-2ax+1=0 (*)
△=4a²-8
当a=0时候,f'(x)>0, 函数单调无极值点;
当a∈(-√2,√2)时,(*)无解,函数单调自增,无极值点;
当a=±√2,(*)有两相同实根,极值点唯一为 X=a/
a属于其他情况时,(*)有两不同实根,极值点分别为 X=(2a±√(4a²-8))/4
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询