如图14(1)所示,在等腰三角形ABC中,AB=AC,O为AB上一点,以点O为圆心,OB长为半径的圆交交BC于点D

在等腰三角形ABC中,AB=AC,O为AB上一点,以点O为圆心,OB长为半径的圆交BC于点D,DE⊥AC交AC于点E。(1)求证:DE是圆O的切线(2)如图14(2)所示... 在等腰三角形ABC中,AB=AC,O为AB上一点,以点O为圆心,OB长为半径的圆交BC于点D,DE⊥AC交AC于点E。
(1)求证:DE是圆O的切线
(2)如图14(2)所示,若圆O与AC相切于F,AB=AC=5cm,sinA=5分之3,求圆O的半径的长
展开
sanjing9420
2013-03-14 · TA获得超过1202个赞
知道小有建树答主
回答量:854
采纳率:79%
帮助的人:185万
展开全部
1、连接OD,
因为D为圆上一点,所以,OD=OB,
则有:△OBD为等腰三角形,即角OBD=角ODB
又△ABC为等腰三角形,所以∠ABC=∠ACB,
所以,∠ODB=∠ACB
因为DE⊥AC交AC于点E,所以∠DEC为直角
那么∠CDE+∠ACB=90°,即∠ODB+∠EDC=90°
则∠ODE=180°-∠ODB-∠EDC=90°
即OD⊥DE
所以,DE为圆的切线。
2、连接OF
因为AC为切线,所以OF⊥AC
即△AOF为直角三角形
sin∠A=3/5
所以OF/AO=3/5
设半径为r,
则有OF=r,AO=5-r
所以r/(5-r)=3/5
解得r=15/8
所以,圆的半径为15/8 cm

呼呼~~不懂问哈~
820204286
2013-04-05 · TA获得超过467个赞
知道答主
回答量:80
采纳率:0%
帮助的人:16.8万
展开全部
1、连接OD,
因为D为圆上一点,所以,OD=OB,
则有:△OBD为等腰三角形,即角OBD=角ODB
又△ABC为等腰三角形,所以∠ABC=∠ACB,
所以,∠ODB=∠ACB
因为DE⊥AC交AC于点E,所以∠DEC为直角
那么∠CDE+∠ACB=90°,即∠ODB+∠EDC=90°
则∠ODE=180°-∠ODB-∠EDC=90°
即OD⊥DE
所以,DE为圆的切线。
2、连接OF
因为AC为切线,所以OF⊥AC
即△AOF为直角三角形
sin∠A=3/5
所以OF/AO=3/5
设半径为r,
则有OF=r,AO=5-r
所以r/(5-r)=3/5
解得r=15/8
所以,圆的半径为15/8 cm
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友34f0f16
2013-03-14
知道答主
回答量:41
采纳率:0%
帮助的人:6.6万
展开全部
1.连接OD,因为OB、OD为圆O的半径,所以OB=OD,又因为ABC为等腰三角形,所以OD//AC;因为DE与AC垂直,所以DE与OD垂直相交于D,所以DE是圆O的切线。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式