如图,已知抛物线y=ax²+bx+c(a≠0)的图像经过原点O,交x轴与点A,其定点B的坐标为(3,-根号3)

如图,已知抛物线y=ax²+bx+c(a≠0)的图像经过原点O,交x轴与点A,其定点B的坐标为(3,-根号3)1.求抛物线的函数解析式及点A的坐标;2.在抛物线... 如图,已知抛物线y=ax²+bx+c(a≠0)的图像经过原点O,交x轴与点A,其定点B的坐标为(3,-根号3)

1.求抛物线的函数解析式及点A的坐标;
2.在抛物线上求点P,使S△POA=2三角形AOB;
3.在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在请求出点Q的坐标;如果不存在,请说明理由。
展开
张卓贤
推荐于2016-12-01 · TA获得超过1.7万个赞
知道大有可为答主
回答量:5142
采纳率:28%
帮助的人:2148万
展开全部
1,其定点B的坐标为(3,-根号3)

那么我们可以把它化为顶点式就是
y=a(x-3)²-根号3
然后还有图像经过原点O,即把(0,0)代进去就得
0=a(0-3)²-根号3
解得a=根号3/9
于是函数方程就是y=根号3/9*(x-3)²-根号3
还有交x轴与点A那就令y=0
就是有0=根号3/9*(x-3)²-根号3
解得x=6或x=0(舍去)
于是A(6,0)
,2△POA和△AOB的底OA是共有的要想面积成两倍关系
只要满足高是两倍关系就好了
就是P点y坐标是B点y坐标两倍就是啦
就是yP=2yB,又yB=|-根号3|=根号3
所以yP=2根号3
把yP=2根号3代进去y=根号3/9*(x-3)²-根号3
就是 2根号3=根号3/9*(x-3)²-根号3
解得x=3+3根号3或x=3-3根号3
于是P(3+3根号3,2根号3)或(3-3根号3,2根号3)
3,是不存在的
容易知道∠BOA=30°
所以∠B=120°
要想有这么一点Q
必须作∠OAQ=120°交抛物线于点Q
还要满足AO=AQ
从图可知两条件不能同时满足
于是不存在点Q,使△AQO与△AOB相似
匿名用户
2013-03-14
展开全部
解析式为y=√3/9x²-2√3/3x,
3.
△AOB是等腰△,OB:AB:OA=1:1:√3,OA=6,∠OBA=120°
若存在点Q(X,Y)符合条件,显然OA为底边不可能,∴OA为腰,
①若OQ为另一腰,则∠AOQ=120°,OQ=OA=6,
∴Q(-3,3√3)或(-3,-3√3)
②若AQ为另一腰,则∠OAQ=120°,OA=AQ=6,
∴Q(9,3√3)或(9,-3√3)
代入y=√3/9x²-2√3/3x,
(-3,3√3)和(9,-3√3)符合题意。
∴点Q坐标为(-3,3√3)和(9,-3√3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式