
解分式方程:1/(x-3)+1/(x-7)=1/(x-4)+1/(x-6).
1个回答
展开全部
1/(x-3)+1/(x-7)=1/(x-4)+1/(x-6).
1/(x-3)-1/(x-4)=1/(x-6)-1/(x-7)
(x-4-x+3)/(x-3)(x-4)=(x-7-x+6)/(x-6)(x-7)
-1/(x-3)(x-4)=-1/(x-6)(x-7)
(x-6)(x-7)=(x-3)(x-4)
x²-13x+42=x²-7x+12
-6x=-30
x=5
检验:x=5是方程的根
1/(x-3)-1/(x-4)=1/(x-6)-1/(x-7)
(x-4-x+3)/(x-3)(x-4)=(x-7-x+6)/(x-6)(x-7)
-1/(x-3)(x-4)=-1/(x-6)(x-7)
(x-6)(x-7)=(x-3)(x-4)
x²-13x+42=x²-7x+12
-6x=-30
x=5
检验:x=5是方程的根
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询