3个回答
2013-03-15
展开全部
考皮from 亚胡answer
let:
tan(x/2) = t
x/2 = arctan t
x = 2arctan t
dx = 2 [1/(1 + t²)] dt
also, recall the tangent half-angle formula:
cosx = [1 - tan²(x/2)]/[1 + tan²(x/2)] = (1 - t²)/(1 + t²)
then, substituting:
∫ [1 /(1 + 2cosx)] dx = ∫ {1 /{1 + 2[(1 - t²) /(1 + t²)]} } 2 [1 /(1 + t²)] dt =
∫ {1 /{[(1 + t²) + 2(1 - t²)] /(1 + t²)} } 2 [1 /(1 + t²)] dt =
∫ {1 /[(1 + t² + 2 - 2t²) /(1 + t²)]} 2 [1 /(1 + t²)] dt =
∫ {1 /[(3 - t²) /(1 + t²)]} 2 [1 /(1 + t²)] dt =
∫ [(1 + t²) /(3 - t²)] 2 [1 /(1 + t²)] dt =
simplifying into:
∫ [2 /(3 - t²)] dt =
let's factor the denominator (as a difference of squares):
∫ {2 /[(√3)² - t²]} dt =
∫ {2 /{[(√3) + t][(√3) - t]} } dt =
let's decompose the integrand into partial fractions:
2 /{[(√3) + t][(√3) - t]} = A/[(√3) + t] + B/[(√3) - t]
2 /{[(√3) + t][(√3) - t]} = {A[(√3) - t] + B[(√3) + t]} /{[(√3) + t][(√3) - t]}
(equating numerators)
2 = A[(√3) - t] + B[(√3) + t]
2 = (√3)A - At + (√3)B + Bt
2 = (- A + B)t + (√3)(A + B)
- A + B = 0
(√3)(A + B) = 2
B = A
(√3)(A + A) = 2
B = A
(√3)2A = 2
B = A = 1/√3
A = 1/√3
therefore:
2 /{[(√3) + t][(√3) - t]} = A/[(√3) + t] + B/[(√3) - t] = (1/√3)/[(√3) + t] + (1/√3)/[(√3) - t]
thus the integral becomes:
∫ [2 /(3 - t²)] dt = ∫ { {(1/√3)/[(√3) + t]} + {(1/√3)/[(√3) - t]} } dt =
let's split this pulling constants out:
(1/√3) ∫ {1 /[(√3) + t]} dt + (1/√3) ∫ {1 /[(√3) - t]} dt =
(changing the sign of the second integral to make the top the derivative of the bottom)
(1/√3) ln |(√3) + t| - (1/√3) ∫ [1 /(t - √3)] dt =
(1/√3) ln |t + √3| - (1/√3) ln |t - √3| + C =
(1/√3) (ln |t + √3| - ln |t - √3|) + C =
(recalling logarithm properties)
(1/√3) ln |(t + √3)/(t - √3)| + C
substitute back tan(x/2) for t, ending with:
∫ [1 /(1 + 2cosx)] dx = (1/√3) ln |[tan(x/2) + √3]/[tan(x/2) - √3]| + C
let:
tan(x/2) = t
x/2 = arctan t
x = 2arctan t
dx = 2 [1/(1 + t²)] dt
also, recall the tangent half-angle formula:
cosx = [1 - tan²(x/2)]/[1 + tan²(x/2)] = (1 - t²)/(1 + t²)
then, substituting:
∫ [1 /(1 + 2cosx)] dx = ∫ {1 /{1 + 2[(1 - t²) /(1 + t²)]} } 2 [1 /(1 + t²)] dt =
∫ {1 /{[(1 + t²) + 2(1 - t²)] /(1 + t²)} } 2 [1 /(1 + t²)] dt =
∫ {1 /[(1 + t² + 2 - 2t²) /(1 + t²)]} 2 [1 /(1 + t²)] dt =
∫ {1 /[(3 - t²) /(1 + t²)]} 2 [1 /(1 + t²)] dt =
∫ [(1 + t²) /(3 - t²)] 2 [1 /(1 + t²)] dt =
simplifying into:
∫ [2 /(3 - t²)] dt =
let's factor the denominator (as a difference of squares):
∫ {2 /[(√3)² - t²]} dt =
∫ {2 /{[(√3) + t][(√3) - t]} } dt =
let's decompose the integrand into partial fractions:
2 /{[(√3) + t][(√3) - t]} = A/[(√3) + t] + B/[(√3) - t]
2 /{[(√3) + t][(√3) - t]} = {A[(√3) - t] + B[(√3) + t]} /{[(√3) + t][(√3) - t]}
(equating numerators)
2 = A[(√3) - t] + B[(√3) + t]
2 = (√3)A - At + (√3)B + Bt
2 = (- A + B)t + (√3)(A + B)
- A + B = 0
(√3)(A + B) = 2
B = A
(√3)(A + A) = 2
B = A
(√3)2A = 2
B = A = 1/√3
A = 1/√3
therefore:
2 /{[(√3) + t][(√3) - t]} = A/[(√3) + t] + B/[(√3) - t] = (1/√3)/[(√3) + t] + (1/√3)/[(√3) - t]
thus the integral becomes:
∫ [2 /(3 - t²)] dt = ∫ { {(1/√3)/[(√3) + t]} + {(1/√3)/[(√3) - t]} } dt =
let's split this pulling constants out:
(1/√3) ∫ {1 /[(√3) + t]} dt + (1/√3) ∫ {1 /[(√3) - t]} dt =
(changing the sign of the second integral to make the top the derivative of the bottom)
(1/√3) ln |(√3) + t| - (1/√3) ∫ [1 /(t - √3)] dt =
(1/√3) ln |t + √3| - (1/√3) ln |t - √3| + C =
(1/√3) (ln |t + √3| - ln |t - √3|) + C =
(recalling logarithm properties)
(1/√3) ln |(t + √3)/(t - √3)| + C
substitute back tan(x/2) for t, ending with:
∫ [1 /(1 + 2cosx)] dx = (1/√3) ln |[tan(x/2) + √3]/[tan(x/2) - √3]| + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询