设函数f(x)=ax^3-3x+1(x属于R),若对于任意的x属于(0,1】都有f(x)大于等于0成
设函数f(x)=ax^3-3x+1(x属于R),若对于任意的x属于(0,1】都有f(x)大于等于0成立,则实数a的取值范围为...
设函数f(x)=ax^3-3x+1(x属于R),若对于任意的x属于(0,1】都有f(x)大于等于0成立,则实数a的取值范围为
展开
1个回答
展开全部
对于任意的x属于(0,1】都有f(x)大于等于0成立
即ax³≥3x-1 ,a≥3/x²-1/x³总成立
设g(x)=3/x²-1/x³,0<x≤1 ,
则需a≥g(x)max
g'(x)=-6/x³+3/x⁴=(-6x+3)/x⁴=-6(x-1/2)/x⁴
∴0<x<1/2时,g'(x)>0,g(x)递增
1/2<x≤1时, g'(x)<0,g(x)递减
∴g(x)max=g(1/2)=12-8=4
∴a≥4
∴实数a的取值范围为[4,+∞)
即ax³≥3x-1 ,a≥3/x²-1/x³总成立
设g(x)=3/x²-1/x³,0<x≤1 ,
则需a≥g(x)max
g'(x)=-6/x³+3/x⁴=(-6x+3)/x⁴=-6(x-1/2)/x⁴
∴0<x<1/2时,g'(x)>0,g(x)递增
1/2<x≤1时, g'(x)<0,g(x)递减
∴g(x)max=g(1/2)=12-8=4
∴a≥4
∴实数a的取值范围为[4,+∞)
更多追问追答
追问
那最后答案是什么呀
追答
实数a的取值范围为[4,+∞)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询