计算定积分∫x^2/√(1-x^2)上限1/2,下限0 拜托啊
2个回答
展开全部
∫(0->1/2) x^2/√(1-x^2) dx
let
x= sina
dx= cosa da
x=0, a=0
x=1/2, a=π/6
∫(0->1/2) x^2/√(1-x^2) dx
=∫(0->π/6) (sina)^2 da
= (1/2) ∫(0->π/6)( 1-cos2a )da
=(1/2)[ a - sin(2a)/2 ] (0->π/6)
=(1/2)( π/6 - √3/4)
let
x= sina
dx= cosa da
x=0, a=0
x=1/2, a=π/6
∫(0->1/2) x^2/√(1-x^2) dx
=∫(0->π/6) (sina)^2 da
= (1/2) ∫(0->π/6)( 1-cos2a )da
=(1/2)[ a - sin(2a)/2 ] (0->π/6)
=(1/2)( π/6 - √3/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询