1个回答
展开全部
由lim[f(x+nx)/f(x)]^(1/n)=e^(1/x),(n趋向于0)
得e^[f(x+nx)-f(x)]/f(x)*(1/n)=e^(1/x),),(n趋向于0)
得lim[f(x+nx)-f(x)]/nf(x)=1/x 用罗比达法则:
limx*f'(x+nx)/f(x)=1/x(n趋向于0)又f(x)>0
得f'(x)/f(x)=1/x^2
f(x)=e^-(1/x)+c limf(x)=1(x趋向正无穷大)求得C=0
故f(x)=e^-(1/x)
希望对有帮助,望采纳
得e^[f(x+nx)-f(x)]/f(x)*(1/n)=e^(1/x),),(n趋向于0)
得lim[f(x+nx)-f(x)]/nf(x)=1/x 用罗比达法则:
limx*f'(x+nx)/f(x)=1/x(n趋向于0)又f(x)>0
得f'(x)/f(x)=1/x^2
f(x)=e^-(1/x)+c limf(x)=1(x趋向正无穷大)求得C=0
故f(x)=e^-(1/x)
希望对有帮助,望采纳
参考资料: http://zhidao.baidu.com/question/320787748.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询