如图,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,且∠1+∠2=90°,证明DA⊥AB
5个回答
富港检测
2024-07-10 广告
2024-07-10 广告
ASTM D4169-22。ASTM D169是-种测试方法, 通过让运输单位接受一个测试计划来执行, 该测试计划包括在各种分销环境中会遇到的一系列危险元素。ASTM D4169是医疗器械行业广泛使用的标准,医疗器械包装最常用的配送周期(D...
点击进入详情页
本回答由富港检测提供
展开全部
角太多了我设一下...设∠ADE=∠3,∠ECB=∠4,∠BEC=∠5,∠AED=∠6,∠DEC=∠7。
因为1+2=90°且有那两个平分,所以7=90°且3+4=90°。
因为∠B=90°,所以4+5=90°,所以3=5。
因为5+6=90°,所以3+6=90°。所以∠A=90°,所以垂直。
有看不懂的就问...
因为1+2=90°且有那两个平分,所以7=90°且3+4=90°。
因为∠B=90°,所以4+5=90°,所以3=5。
因为5+6=90°,所以3+6=90°。所以∠A=90°,所以垂直。
有看不懂的就问...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明
∵DE,CE分别平分∠ADC,∠DCB
∴∠1=∠ADE,∠2=∠ECB
∵∠1﹢∠2=90
∴∠ADE﹢∠ECB=90
∴∠ADC﹢∠DCB=180
∴AD∥BC
∴AD⊥AB
∵DE,CE分别平分∠ADC,∠DCB
∴∠1=∠ADE,∠2=∠ECB
∵∠1﹢∠2=90
∴∠ADE﹢∠ECB=90
∴∠ADC﹢∠DCB=180
∴AD∥BC
∴AD⊥AB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为CE平分∠BCD,DE平分∠CDA,所以∠ADE=∠1,∠ECB=∠2
又因为∠1+∠2=90°,所以∠ADE+∠ECB=90°即∠ADC+∠BCD=180°
四边形ADEC中,∠A+∠B+∠ADC+∠BCD=360°
因为CB⊥AB,所以∠B=90°
所以∠A=360°-180°-90°=90°
所以DA⊥AB
又因为∠1+∠2=90°,所以∠ADE+∠ECB=90°即∠ADC+∠BCD=180°
四边形ADEC中,∠A+∠B+∠ADC+∠BCD=360°
因为CB⊥AB,所以∠B=90°
所以∠A=360°-180°-90°=90°
所以DA⊥AB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
adc+bcd=2(角1+角2)=180
bad=360-180-abc=90
可证da垂直ab
bad=360-180-abc=90
可证da垂直ab
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询