函数y=sin3(3x+π/4)的导数是什么啊!我知道答案,但是看不懂怎么来的,求详细解答过程!
2个回答
展开全部
复合函数求导.
y=sin3(3x+π/4)=sin(9x+3π/4)
y'=cos(9x+3π/4)·(9x+3π/4)'
=9cos3(x+π/4)
注:{f[g(x)]]'=f'[g(x)]·g'(x)
y=sin3(3x+π/4)=sin(9x+3π/4)
y'=cos(9x+3π/4)·(9x+3π/4)'
=9cos3(x+π/4)
注:{f[g(x)]]'=f'[g(x)]·g'(x)
追问
可答案不是这个啊,答案是9sin2(3x+π/4)cos(3x+π/4)
追答
题打的不对.原来是y=sin³(3x+π/4)
y'=3sin²(3x+π/4)·[sin(3x+π/4)]'
=3sin²(3x+π/4)·cos(3x+π/4)·(3x+π/4)'
=9sin²(3x+π/4)·cos(3x+π/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询