数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*)。 (1)求数列{an}的通项公式(

(2)设Sn=|a1|+|a2|+...+|an|,求Sn;(3)设bn=1/n(12-an)(n∈N*),Tn=b1+b2+......+bn(n∈N*),是否存在最大... (2)设Sn=|a1|+|a2|+...+|an|,求Sn;
(3)设bn=1/n(12-an)(n∈N*),Tn=b1+b2+......+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说明理由。
均有Tn>m/32成立?若存在,求出m的值;若不存在,说明理由。
展开
匿名用户
2013-03-17
展开全部
解:
(1)
a4=2a3-a2
a3=2a2-a1
a4=2(2a2-a1)-a2=3a2-2a1=3a2-2×8=3a2-16=2
3a2=18
a2=6
a2-a1=6-8=-2
a3=2a2-a1=2×6-8=12-8=4
(a3-a2)-(a2-a1)=(4-6)-(6-8)=0
a(n+2)=2a(n+1)-an
a(n+2)-a(n+1)=a(n+1)-an=...=a2-a1=-2,为定值。
数列{an}是以8为首项,-2为公差的等差数列
an=8-2(n-1)=10-2n
数列{an}的通项公式为an=10-2n
(2)
令10-2n≥0,解得n≤5,即数列前5项非负,从第6项开始,以后各项均<0。
n≤5时,Sn=a1+a2+...+an=10n -2(1+2+...+n)=10n -2n(n+1)/2=9n -n²
n≥6时,
Sn=a1+a2+...+a5-a6-a7-...-an
=-(a1+a2+...+an) +2(a1+a2+...+a5)
=-(9n-n²)+2×(9×5 -5²)
=n²-9n+40
(3)bn=1/[n(12-an)]=(1/2)1/[n(n+1)]=(1/2)[1/n-1/(n+1)]
Tn=b1+b2+...+bn
=(1/2)[1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=(1/2)[1-1/(n+1)]
=n/[2(n+1)]
均有Tn>(m/32)成立
n/2(n+1)>m/32
m<16n/(n+1)=16/(1+1/n)
又有16/(1+1/n)在n=1时取得最小值是8
故有m<8,故存在最大的m是7
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式