一道高一数学题,关于数列,要详细过程解答

淡浩大05Z
2013-03-18 · TA获得超过426个赞
知道小有建树答主
回答量:147
采纳率:0%
帮助的人:242万
展开全部

很高兴回答你的问题,如有帮助请采纳,有疑问请追问,谢谢

tllau38
高粉答主

2013-03-18 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
an=1^2+2^2+..+n^2
bn=(n+1)(2n+1)/an
To find:
(1) b1,b2,...,bn
(2) general term of bn
n^2= n(n+1) -n
= (1/3)[ n(n+1)(n+2) -(n-1)n(n+1) ] -n
an=1^2+2^2+..+n^2
= (1/3)n(n+1)(n+2) - n(n+1)/2
= (1/6)n(n+1)(2n+1)
bn = (n+1)(2n+1)/an
= 6/n
b1=6, b2=3,b3=2, b4=3/2, b5=6/5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
风中的纸屑866
2013-03-18 · 公务员
风中的纸屑866
采纳数:15372 获赞数:52129

向TA提问 私信TA
展开全部
【参考答案】

∵an=1²+2²+3²+……+n²=n(n+1)(2n+1)/6
∴bn=(n+1)(2n+1)/(2an)
=6(n+1)(2n+1)×1/[2n(n+1)(2n+1)]
=3/n
∴ b1=3,b2=3/2,b3=1,b4=3/4,b5=3/5
{bn}的通项公式是bn=3/n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
niezhanguo5
2013-03-18 · TA获得超过2414个赞
知道小有建树答主
回答量:1109
采纳率:14%
帮助的人:814万
展开全部

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 

利用立方差公式 
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] 
=n^2+(n-1)^2+n^2-n 
=2*n^2+(n-1)^2-n 

2^3-1^3=2*2^2+1^2-2 
3^3-2^3=2*3^2+2^2-3 
4^3-3^3=2*4^2+3^2-4 
...... 
n^3-(n-1)^3=2*n^2+(n-1)^2-n 

各等式全相加 
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) 

n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n) 

n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 

n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) 
=(n/2)(n+1)(2n+1) 

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sly781120
2013-03-18 · TA获得超过426个赞
知道小有建树答主
回答量:554
采纳率:0%
帮助的人:196万
展开全部
先化简An:An=n(n+1)(2n+1)/6。解法自己百度平方数列求和。后面答案就出来了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
天使629920
2013-03-18
知道答主
回答量:9
采纳率:0%
帮助的人:1.4万
展开全部
我想问一下这是几年级的
追问
高一
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式