已知等差数列{1/(2n+1)(2n+3)},求此数列的前n项和
3个回答
展开全部
解1/(2n+1)*(2n+3)=1/2(1/(2n+1)-1/(2n+3))
1/3*5=1/2(1/3-1/5)
1/5*7=1/2(1/5-1/7)
1/7*9=1/2(1/7-1/9)
.......................
1/(2n+1)*(2n+3)=1/2(1/(2n+1)-1/(2n+3))
上述各式相加得
1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+.........++1/2(1/(2n+1)-1/(2n+3))
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+.........+(1/(2n+1)-1/(2n+3))
=1/2(1/3-1/2n+3)
=1/6-1/2(2n+3)
1/3*5=1/2(1/3-1/5)
1/5*7=1/2(1/5-1/7)
1/7*9=1/2(1/7-1/9)
.......................
1/(2n+1)*(2n+3)=1/2(1/(2n+1)-1/(2n+3))
上述各式相加得
1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+.........++1/2(1/(2n+1)-1/(2n+3))
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+.........+(1/(2n+1)-1/(2n+3))
=1/2(1/3-1/2n+3)
=1/6-1/2(2n+3)
追问
麻烦问一下,第一步的那个二分之一是如何带入的
追答
解1/2*(1/(2n+1)-1/(2n+3))
=1/2*[(2n+3)/(2n+1)*(2n+3)-(2n+1)/(2n+1)(2n+3)]
=1/2*{[(2n+3)-(2n+1)]/(2n+1)(2n+3)}
=1/2*{2/(2n+1)(2n+3)}
=1/(2n+1)*(2n+3)
即1/(2n+1)*(2n+3)=1/2(1/(2n+1)-1/(2n+3))
展开全部
解答:
裂项求和
2/(2n+1)(2n+3)
=[(2n+3)-(2n+1)]/(2n+1)(2n+3)
=1/(2n+1)-1/(2n+3)
∴ 1/(2n+1)(2n+3)=(1/2)*[1/(2n+1)-1/(2n+3)]
∴ 设前n项和为Sn
∴ Sn=(1/2)(1/3-1/5)+(1/2)(1/5-1/7)+......+(1/2)*[1/(2n+1)-1/(2n+3)]
=(1/2)[1/3-1/(2n+3)]
=(1/2)(2n+3-3)/ [3*(2n+3)]
=n/(6n+9)
裂项求和
2/(2n+1)(2n+3)
=[(2n+3)-(2n+1)]/(2n+1)(2n+3)
=1/(2n+1)-1/(2n+3)
∴ 1/(2n+1)(2n+3)=(1/2)*[1/(2n+1)-1/(2n+3)]
∴ 设前n项和为Sn
∴ Sn=(1/2)(1/3-1/5)+(1/2)(1/5-1/7)+......+(1/2)*[1/(2n+1)-1/(2n+3)]
=(1/2)[1/3-1/(2n+3)]
=(1/2)(2n+3-3)/ [3*(2n+3)]
=n/(6n+9)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
前n项和
=1/3×5+1/5×7+1/7×9+.....+1/(2n+1)(2n+3)
=1/2 [1/3-1/5+1/5-1/7+1/7-1/9+。。。+1/(2n+1)-1/(2n+3)]
=1/2[1/3-1/(2n+3)]
=1/2[2n/(2n+3)]
=n/(2n+3)
=1/3×5+1/5×7+1/7×9+.....+1/(2n+1)(2n+3)
=1/2 [1/3-1/5+1/5-1/7+1/7-1/9+。。。+1/(2n+1)-1/(2n+3)]
=1/2[1/3-1/(2n+3)]
=1/2[2n/(2n+3)]
=n/(2n+3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询