求解下列的不定积分
展开全部
做代换,t=x^4 dt=4x^3dx
原积分=(1/4)∫ (1+x^4+x^8)/[(1-x^8)x^4] ( 4x^3dx)
=(1/4)∫(1+t+t^2)/[(1-t^2)t] dt
=(3/8)∫[1/(1-t)]dt-(1/8)∫[1/(1+t)]dt+(1/4)∫(1/t)dt
=-(3/8)ln|1-t|-(1/8)ln|1+t|+(1/4)lnt+C
=-(3/8)ln|1-x^4|-(1/8)ln|1+x^4|+ln|x|+C
原积分=(1/4)∫ (1+x^4+x^8)/[(1-x^8)x^4] ( 4x^3dx)
=(1/4)∫(1+t+t^2)/[(1-t^2)t] dt
=(3/8)∫[1/(1-t)]dt-(1/8)∫[1/(1+t)]dt+(1/4)∫(1/t)dt
=-(3/8)ln|1-t|-(1/8)ln|1+t|+(1/4)lnt+C
=-(3/8)ln|1-x^4|-(1/8)ln|1+x^4|+ln|x|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询