∑为上半球面z=√(4-x^2-y^2)的上侧,则对坐标的曲面积分∫∫x^2dxdy,关于这题本人算到额答案是4π,

不知道大家算到的答案是多少,如果不是4π,那是多少,详细过程是怎样呢?... 不知道大家算到的答案是多少,如果不是4π,那是多少,详细过程是怎样呢? 展开
wxwxsx
2013-03-21 · TA获得超过1232个赞
知道小有建树答主
回答量:469
采纳率:0%
帮助的人:443万
展开全部
被平面Σ1:z=0,x²+y²≤4,下侧
则Σ与Σ1构成封闭曲面,用高斯公式
∫∫(Σ+Σ1) xydydz+z^2dzdx+y^2dxdy
=∫∫∫ (y+0+0)dxdydz
被积函数只剩下y,由于区域关于xoz面对称,y是奇函数,所以结果为0
综上,上面积分为0.

下面将补的Σ1减出去即可:
∫∫(Σ1) xydydz+z^2dzdx+y^2dxdy

=-∫∫ y² dxdy
用极坐标
=-∫∫ r³sin²θ drdθ
=-∫[0→2π]sin²θdθ∫[0→2] r³ dr
=-(1/2)∫[0→2π] (1-cos2θ) dθ∫[0→2] r³ dr
=-π(1/4)r^4 |[0→2]
=-4π
因此原积分=0-(-4π)=4π
希望有帮助!呵呵!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式