设X.Y满足约束条件{3x-y-6≤0 x-y+2≥0 x≥0 y≥0}若目标函数z=ax+by (a>0,b>0)的最大值为12,
则a^2/9+b^2/4的最小值解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)...
则a^2/9 +b^2/4的最小值
解:不等式表示的平面区域如图所示阴影部分,
当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6
则a^2/9 +b^2=(3-3/2b)^2/9 +b^2/4的最小值是1/2
最后一步看不懂 展开
解:不等式表示的平面区域如图所示阴影部分,
当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6
则a^2/9 +b^2=(3-3/2b)^2/9 +b^2/4的最小值是1/2
最后一步看不懂 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询