求方程y=1+xe^y所确定的隐函数y的导数dy/dx
展开全部
y-1=xe^y
两边同时对x求导得
y'=e^y+xe^y*y'
(1-xe^y)y'=e^y
y'=e^y/(1-xe^y)
=e^y/(2-y)
y''=(e^y*y'+e^y*y')/(2-y)²
=(2e^y)e^y/(2-y)³
=2e^2y/(2-y)³
两边同时对x求导得
y'=e^y+xe^y*y'
(1-xe^y)y'=e^y
y'=e^y/(1-xe^y)
=e^y/(2-y)
y''=(e^y*y'+e^y*y')/(2-y)²
=(2e^y)e^y/(2-y)³
=2e^2y/(2-y)³
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
两边对x求导得
y'=e^y+xe^y*y'
解得
y'=e^y/(1-xe^y)
y'=e^y+xe^y*y'
解得
y'=e^y/(1-xe^y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |