正方形abcd的边长为3,E,F分别是AB,AC边上的点,且∠ABC=45°,将△DAE绕点D旋转90°,得到△DCM.

求证:EF=CM当AE=1时,求EF的长。... 求证:EF=CM
当AE=1时,求EF的长。
展开
匿名用户
2013-03-23
展开全部
1)证明:∵△DAE逆时针旋转90°得到△DCM,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDM=45°,
在△DEF和△DMF中,
DE=DM ∠EDF=∠MDF DF=DF ,
∴△DEF≌△DMF(SAS),
∴EF=MF;…(4分)
(2)设EF=MF=x,
∵AE=CM=1,且BC=3,
∴BM=BC+CM=3+1=4,
∴BF=BM-MF=BM-EF=4-x,
∵EB=AB-AE=3-1=2,
在Rt△EBF中,由勾股定理得EB²+BF²=EF²,
即2²+(4-x)²=x²,
解得:x=5/2 ,
则EF=5/2
xxhzzj
2013-03-22 · TA获得超过3.5万个赞
知道大有可为答主
回答量:6056
采纳率:53%
帮助的人:2579万
展开全部
正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM;
(2)当AE=1时,求EF的长.
1)证明:∵△DAE逆时针旋转90°得到△DCM,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDM=45°,
在△DEF和△DMF中,
DE=DM ∠EDF=∠MDF DF=DF ,
∴△DEF≌△DMF(SAS),
∴EF=MF;…(4分)
(2)设EF=MF=x,
∵AE=CM=1,且BC=3,
∴BM=BC+CM=3+1=4,
∴BF=BM-MF=BM-EF=4-x,
∵EB=AB-AE=3-1=2,
在Rt△EBF中,由勾股定理得EB²+BF²=EF²,
即2²+(4-x)²=x²,
解得:x=5/2 ,
则EF=5/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式