微积分定积分一个题目
展开全部
楼上太麻烦了
用我的分部积分更快速
d(-1/x)=(1/x^2)dx
所以原式
=∫[0,∞] sin^2 x d(-1/x)
=-sin^2 x/x |[0,∞] +∫[0,∞] (1/x) d(sin^2 x)
第一项
在x=0处 sin^2 x~x^2
一除得到x,所以=0
在x=∞,分子有界,分母趋向∞,所以也为0
所以第一项=0
=∫[0,∞] (2sinxcosx/x) dx
=∫[0,∞] sin(2x)/(2x) d(2x)
换元t=2x
=∫[0,∞] sint/t dt
=π/2
用我的分部积分更快速
d(-1/x)=(1/x^2)dx
所以原式
=∫[0,∞] sin^2 x d(-1/x)
=-sin^2 x/x |[0,∞] +∫[0,∞] (1/x) d(sin^2 x)
第一项
在x=0处 sin^2 x~x^2
一除得到x,所以=0
在x=∞,分子有界,分母趋向∞,所以也为0
所以第一项=0
=∫[0,∞] (2sinxcosx/x) dx
=∫[0,∞] sin(2x)/(2x) d(2x)
换元t=2x
=∫[0,∞] sint/t dt
=π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫<0,+∞>[sin²x/x²]dx
=x*sin²x/x²-∫<0,+∞>xd[sin²x/x²] (分部积分)
=0-∫<0,+∞>xd[sin²x/x²] {x取(0,+∞)时,减号前面为0}
=-∫<0,+∞>x[(2x²sinxcosx-sin²x*2x)/x^4]dx
=-∫<0,+∞>(2sinxcosx/x)*dx+∫<0,+∞>(2sin²x/x²)dx
=> ∫<0,+∞>[sin²x/x²]dx
=∫<0,+∞>(2sinxcosx/x)*dx
=∫<0,+∞>(sin2x/x)*dx
=∫<0,+∞>(sint/t)*dt {令t=2x}
=π/2 {已知∫<0,+∞>(sinx/x)*dx=π/2}
=x*sin²x/x²-∫<0,+∞>xd[sin²x/x²] (分部积分)
=0-∫<0,+∞>xd[sin²x/x²] {x取(0,+∞)时,减号前面为0}
=-∫<0,+∞>x[(2x²sinxcosx-sin²x*2x)/x^4]dx
=-∫<0,+∞>(2sinxcosx/x)*dx+∫<0,+∞>(2sin²x/x²)dx
=> ∫<0,+∞>[sin²x/x²]dx
=∫<0,+∞>(2sinxcosx/x)*dx
=∫<0,+∞>(sin2x/x)*dx
=∫<0,+∞>(sint/t)*dt {令t=2x}
=π/2 {已知∫<0,+∞>(sinx/x)*dx=π/2}
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询