已知a,b,c为实数,且ab/a+b=1/3,bc/b+c=1/4,ac/c+a=1/5,求abc/ab+bc+ca.
展开全部
因为 ab/(a+b)=1/3 , bc/(b+c)=1/4 , ca/(c+a)=1/5
所以:
(a+b)/ab = 3
(b+c)/bc = 4
(a+c)/ac = 5
即:
1/a + 1/b = 3
1/b + 1/c = 4
1/a + 1/c = 5
三式相加,得:
2(1/a + 1/b + 1/c) = 12
所以:1/a + 1/b + 1/c = 6
先邱“abc/(ab+bc+ca)”的倒数:
(ab+bc+ca)/abc
= 1/a + 1/b + 1/c = 6
所以:
abc/(ab+bc+ca) = 1/6
所以:
(a+b)/ab = 3
(b+c)/bc = 4
(a+c)/ac = 5
即:
1/a + 1/b = 3
1/b + 1/c = 4
1/a + 1/c = 5
三式相加,得:
2(1/a + 1/b + 1/c) = 12
所以:1/a + 1/b + 1/c = 6
先邱“abc/(ab+bc+ca)”的倒数:
(ab+bc+ca)/abc
= 1/a + 1/b + 1/c = 6
所以:
abc/(ab+bc+ca) = 1/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-07-24
展开全部
ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5可以取倒数得出a+b/ab=3,b+c/bc=4,a+c/ac=5分解有
1/a+1/b=3,1/b+1/c=4,1/a+1/c=5,解得
a=1/2,b=1,c=1/3由此可得
1/a+1/b+1/c=6得
abc/ab+bc+ca=1/(1/a+1/b+1/c)=1/6
1/a+1/b=3,1/b+1/c=4,1/a+1/c=5,解得
a=1/2,b=1,c=1/3由此可得
1/a+1/b+1/c=6得
abc/ab+bc+ca=1/(1/a+1/b+1/c)=1/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询