
求数列Cn=(2n+1)/(2^n+1)的前n项和(请写个详细的过程,谢谢)
展开全部
解答:
错位相减法
设前n项和是Sn
则 Sn=3/2²+5/2³+ 7/2^4+.........+(2n-1)/2^n+ (2n+1)/2^(n+1) ①
①乘以1/2
(1/2)Sn= 3/2³+5/2^4+.............................+(2n-1)/2^(n+1)+(2n+1)/2^(n+2)
则 ①-②
(1/2)Sn=3/4+2【1/2³+1/2^4+............................+1/2^(n+1)】-(2n+1)/2^(n+2)
=3/4+【1/2²+1/2³+1/2^4+............................+1/2^n]-(2n+1)/2^(n+2)
=3/4+1/2-1/2^n-(2n+1)/2^(n+2)
∴ Sn=5/2-2/2^n-(2n+1)/2^(n+1)
错位相减法
设前n项和是Sn
则 Sn=3/2²+5/2³+ 7/2^4+.........+(2n-1)/2^n+ (2n+1)/2^(n+1) ①
①乘以1/2
(1/2)Sn= 3/2³+5/2^4+.............................+(2n-1)/2^(n+1)+(2n+1)/2^(n+2)
则 ①-②
(1/2)Sn=3/4+2【1/2³+1/2^4+............................+1/2^(n+1)】-(2n+1)/2^(n+2)
=3/4+【1/2²+1/2³+1/2^4+............................+1/2^n]-(2n+1)/2^(n+2)
=3/4+1/2-1/2^n-(2n+1)/2^(n+2)
∴ Sn=5/2-2/2^n-(2n+1)/2^(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询