高数 不定积分3
展开全部
解答:
令t=tanx,则x=arctant,
所以原式=∫t²arctantdarctant
=∫t²arctant/(1+t²)dt
=∫arctant*(1+t²-1)/(1+t²)dt
=∫arctantdt-∫arctant/(1+t²)dt
=(t*arctant-∫t/(1+t²)dt)+1/2*arctan²t
=1/2(t²+1)(arctant)²-tarctant+1/2ln(1+t²)+C.
=1/2(tan^2x+1)x^2-xtanx+1/2ln(1+tan^2x)+C.
令t=tanx,则x=arctant,
所以原式=∫t²arctantdarctant
=∫t²arctant/(1+t²)dt
=∫arctant*(1+t²-1)/(1+t²)dt
=∫arctantdt-∫arctant/(1+t²)dt
=(t*arctant-∫t/(1+t²)dt)+1/2*arctan²t
=1/2(t²+1)(arctant)²-tarctant+1/2ln(1+t²)+C.
=1/2(tan^2x+1)x^2-xtanx+1/2ln(1+tan^2x)+C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询