
已知向量OB=(1,1)向量OC=(2,2)向量CA=(根号2cosx,根号2sinx)若f(x)=向量OA×向量OB。
1个回答
展开全部
1、向量OA=向量OC+向量CA=(2,2)+(√2 cosx,√2 sinx)=(2+√2 cosx,2+√2 sinx)
f(x)=向量OA×向量OB
=(2+√2 cosx,2+√2 sinx) *(1,1)
=2+√2 cosx+2+√2 sinx
=4+√2 cosx+√2 sinx
=4+2 sin(x+π/4)
2、sinx在(- π/2+2kπ,π/2+ 2kπ] 上递增
- π/2+2kπ<x+π/4 =< π/2+ 2kπ
- 3π/4+2kπ<x=< π/4 + 2kπ
f(x)单调增区间为:( - 3π/4+2kπ, π/4 + 2kπ]
3、f(x)单调增区间为:( - 3π/4+2kπ, π/4 + 2kπ]
x∈[0,π/2]
x=0或π/2,f(x)取最小值,
=4+2 sin(x+π/4)
=4+2 *√2/2
=4+√2
x=π/4,f(x)取最大值,
=4+2 sin(x+π/4)
=4+2 *1
=6
f(x)的取值范围[4+√2 , 6]
f(x)=向量OA×向量OB
=(2+√2 cosx,2+√2 sinx) *(1,1)
=2+√2 cosx+2+√2 sinx
=4+√2 cosx+√2 sinx
=4+2 sin(x+π/4)
2、sinx在(- π/2+2kπ,π/2+ 2kπ] 上递增
- π/2+2kπ<x+π/4 =< π/2+ 2kπ
- 3π/4+2kπ<x=< π/4 + 2kπ
f(x)单调增区间为:( - 3π/4+2kπ, π/4 + 2kπ]
3、f(x)单调增区间为:( - 3π/4+2kπ, π/4 + 2kπ]
x∈[0,π/2]
x=0或π/2,f(x)取最小值,
=4+2 sin(x+π/4)
=4+2 *√2/2
=4+√2
x=π/4,f(x)取最大值,
=4+2 sin(x+π/4)
=4+2 *1
=6
f(x)的取值范围[4+√2 , 6]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询