
3个回答
展开全部
s(n)=a(1)+a(2)+...+a(n), s(1)=a(1),
A(n)=[a(1)]^3+[a(2)]^3+...+[a(n)]^3, A(1)=[a(1)]^3,
s(n)=[A(n)]^(1/2), s(1)=a(1)=[A(1)]^(1/2)=[a(1)]^(3/2), s(1)=a(1)=A(1)=1.
[s(n)]^2 = A(n),
[s(n+1)]^2 = A(n+1) = A(n) + [a(n+1)]^3 = [s(n) + a(n+1)]^2 = [s(n)]^2 + [a(n+1)]^2 + 2a(n+1)s(n)
= A(n) + [a(n+1)]^2 + 2a(n+1)s(n),
[a(n+1)]^3 = [a(n+1)]^2 + 2a(n+1)s(n),
[a(n+1)]^2 = a(n+1) + 2s(n),
[a(2)]^2 = a(2) + 2s(1), 0 = [a(2)]^2 - a(2) - 2 = [a(2)-2][a(2)-1], a(2)=2.
[a(n+2)]^2 = a(n+2) + 2s(n+1),
[a(n+2)]^2 - [a(n+1)]^2 = a(n+2)-a(n+1) + 2[s(n+1)-s(n)] = a(n+2)-a(n+1)+2a(n+1)
=a(n+2)+a(n+1)={a(n+2)+a(n+1)}{a(n+2)-a(n+1)},
1 = a(n+2)-a(n+1),
{a(n+1)}是首项为a(2)=2, 公差为1的等差数列。
a(n+1) = 2 + (n-1) = n+1,
a(n) = n
A(n)=[a(1)]^3+[a(2)]^3+...+[a(n)]^3, A(1)=[a(1)]^3,
s(n)=[A(n)]^(1/2), s(1)=a(1)=[A(1)]^(1/2)=[a(1)]^(3/2), s(1)=a(1)=A(1)=1.
[s(n)]^2 = A(n),
[s(n+1)]^2 = A(n+1) = A(n) + [a(n+1)]^3 = [s(n) + a(n+1)]^2 = [s(n)]^2 + [a(n+1)]^2 + 2a(n+1)s(n)
= A(n) + [a(n+1)]^2 + 2a(n+1)s(n),
[a(n+1)]^3 = [a(n+1)]^2 + 2a(n+1)s(n),
[a(n+1)]^2 = a(n+1) + 2s(n),
[a(2)]^2 = a(2) + 2s(1), 0 = [a(2)]^2 - a(2) - 2 = [a(2)-2][a(2)-1], a(2)=2.
[a(n+2)]^2 = a(n+2) + 2s(n+1),
[a(n+2)]^2 - [a(n+1)]^2 = a(n+2)-a(n+1) + 2[s(n+1)-s(n)] = a(n+2)-a(n+1)+2a(n+1)
=a(n+2)+a(n+1)={a(n+2)+a(n+1)}{a(n+2)-a(n+1)},
1 = a(n+2)-a(n+1),
{a(n+1)}是首项为a(2)=2, 公差为1的等差数列。
a(n+1) = 2 + (n-1) = n+1,
a(n) = n
展开全部
Sn=根号下An
所以 Sn^2 = A n
S1^2 = a1^3
a1^2 = a1^3
a1 = 1
(a1+a2)^2 = (a1^3 + a2^3)
(1+a2)^2 = (1+a2^3) = (1+a2)(1-a2+a2^2)
所以
1+a2 = 1-a2+a2^2
得
a2=2
猜想an= n;
用数学归纳法证明
假设n <=k时, ak =k
Sk = (1+k)*k/2
Ak = (1^3 +2^3 +... +k^3)
立方和公式
= ((1+k)*k/2)^2
= Sk^2
Sk=根号下Ak 成立
Sk +(k+1) = (1+k)(k/2 +1) = (1+k)(2+k)/2
Ak +(k+1) ^3 = ((1+k)*k/2)^2 +(k+1) ^3 = ((1+k)*(k+2)/2)^2
= Sk+1 ^2
n =k+1时,依据n <=k时的结果推导, 仍然有Sk+1=根号下Ak+1 成立
所以假设对所有n成立
{an}的通项公式an = n
所以 Sn^2 = A n
S1^2 = a1^3
a1^2 = a1^3
a1 = 1
(a1+a2)^2 = (a1^3 + a2^3)
(1+a2)^2 = (1+a2^3) = (1+a2)(1-a2+a2^2)
所以
1+a2 = 1-a2+a2^2
得
a2=2
猜想an= n;
用数学归纳法证明
假设n <=k时, ak =k
Sk = (1+k)*k/2
Ak = (1^3 +2^3 +... +k^3)
立方和公式
= ((1+k)*k/2)^2
= Sk^2
Sk=根号下Ak 成立
Sk +(k+1) = (1+k)(k/2 +1) = (1+k)(2+k)/2
Ak +(k+1) ^3 = ((1+k)*k/2)^2 +(k+1) ^3 = ((1+k)*(k+2)/2)^2
= Sk+1 ^2
n =k+1时,依据n <=k时的结果推导, 仍然有Sk+1=根号下Ak+1 成立
所以假设对所有n成立
{an}的通项公式an = n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
哥 你的问题能详细点吗 什么数列啊 等差 等比?
更多追问追答
追问
一般数列啊。
追答
。。。一般数列? 不懂 我无能为力 sorry (是找规律?)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询