已知x+y=1,x^3+y^3=1/3,求 x^5+y^5
展开全部
答:
x^3+y^3
=(x+y)(x^2-xy+y^2)
=x^2-xy+y^2=1/3
(x+y)^2=x^2+2xy+y^2=1
所以相减得xy=2/9
x^5+y^5
=(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)
=x^4-x^3y+x^2y^2-xy^3+y^4
=(x^2-xy+y^2)^2+x^3y+xy^3-2x^2y^2
=1/9+xy(x^2-xy+y^2)-x^2y^2
=1/9+2/27-4/81
=11/81
x^3+y^3
=(x+y)(x^2-xy+y^2)
=x^2-xy+y^2=1/3
(x+y)^2=x^2+2xy+y^2=1
所以相减得xy=2/9
x^5+y^5
=(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)
=x^4-x^3y+x^2y^2-xy^3+y^4
=(x^2-xy+y^2)^2+x^3y+xy^3-2x^2y^2
=1/9+xy(x^2-xy+y^2)-x^2y^2
=1/9+2/27-4/81
=11/81
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询