怎样用空间向量解立体几何证明题?
1.传统证明是用平行四边形三角形中位线线面垂直这些,怎样的图形用空间向量解比较好?是不是题目中给出有垂直的图形?2.建立空间坐标系后,各个点的坐标是不是用刻度尺去量?有小...
1.传统证明是用平行四边形 三角形中位线 线面垂直这些,怎样的图形用空间向量解比较好?是不是题目中给出有垂直的图形?
2.建立空间坐标系后,各个点的坐标是不是用刻度尺去量?有小数点的怎么处理?
3.各个向量的方向怎么判断?是指向哪里的?
4.法向量是不是可以把题中给出的那条垂直线作为法向量?如果是 那方向怎么判断?是与垂直平面向上的吗?
5.找不到法向量是不是要自己设?听说要用式子 或 叉乘,那式子和叉乘是怎样的?自己设的法向量需不需要在图中画出来? 展开
2.建立空间坐标系后,各个点的坐标是不是用刻度尺去量?有小数点的怎么处理?
3.各个向量的方向怎么判断?是指向哪里的?
4.法向量是不是可以把题中给出的那条垂直线作为法向量?如果是 那方向怎么判断?是与垂直平面向上的吗?
5.找不到法向量是不是要自己设?听说要用式子 或 叉乘,那式子和叉乘是怎样的?自己设的法向量需不需要在图中画出来? 展开
2个回答
展开全部
空间向量作为新加入的内容,在处理空间问题中具有相银好当的优越性,比原来处理空间问题的方法更有灵活性。
如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.
立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
以下用向量法求解的简单常识:
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得或对空间一定点O有
2、对空间任一点O和不共线的三点A,B,C,若:(其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a‖b,就是分别在a,b上取向量(k∈R).
4、利用向量证在线a⊥b,就是分别在a,b上取向量.
5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题.
6、利用向量求距离就是转化成求向量的模问题:.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
首先该图形能建坐标系
如果能建
则先要会求面的法向量
求面的法向量的方法是1。尽量在土中找到垂直与面的向量
2。如果找链腊不到,那么就设n=(x,y,z)
然后因为法向量垂直于面
所以n垂直于面内两相交直线
可列出两个方程
两个方程,三个未棚搏滑知数
然后根据计算方便
取z(或x或y)等于一个数
然后就求出面的一个法向量了
会求法向量后
1。二面角的求法就是求出两个面的法向量
可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积
如过在两面的同一边可以看到两向量的箭头或箭尾相交
那么二面角就是上面求的两法向量的夹角的补角
如果只能看到其中一个的箭头和另一个的箭尾相交
那么上面两向量的夹角就是所求
2。点到平面的距离就是求出该面的法向量
然后在平面上任取一点(除平面外那点在平面内的射影)
求出平面外那点和你所取的那点所构成的向量记为n1
点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求
如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.
立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
以下用向量法求解的简单常识:
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得或对空间一定点O有
2、对空间任一点O和不共线的三点A,B,C,若:(其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a‖b,就是分别在a,b上取向量(k∈R).
4、利用向量证在线a⊥b,就是分别在a,b上取向量.
5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题.
6、利用向量求距离就是转化成求向量的模问题:.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
首先该图形能建坐标系
如果能建
则先要会求面的法向量
求面的法向量的方法是1。尽量在土中找到垂直与面的向量
2。如果找链腊不到,那么就设n=(x,y,z)
然后因为法向量垂直于面
所以n垂直于面内两相交直线
可列出两个方程
两个方程,三个未棚搏滑知数
然后根据计算方便
取z(或x或y)等于一个数
然后就求出面的一个法向量了
会求法向量后
1。二面角的求法就是求出两个面的法向量
可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积
如过在两面的同一边可以看到两向量的箭头或箭尾相交
那么二面角就是上面求的两法向量的夹角的补角
如果只能看到其中一个的箭头和另一个的箭尾相交
那么上面两向量的夹角就是所求
2。点到平面的距离就是求出该面的法向量
然后在平面上任取一点(除平面外那点在平面内的射影)
求出平面外那点和你所取的那点所构成的向量记为n1
点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求
展开全部
1.已有三条相互垂直的线,或有一面与地面垂直的建系比较方便。一般立体几何两类解法都行,看自己擅长什么了。一般几何法计算简单但思路难。
2.没听说过坐标用刻度尺量的,坐标怎么好袜磨算怎么设。无理式直接带根号就行,小数点建议用分式,否则很难算
3.判断已知向量方向吗?只要看一个参数就行了
4.法向量可以用题中给出的。如果没有自己设。
关于方向,如果证平行方向就无所谓了,如果求角,根据题设定方向。反正不能认准向上设,这个很灵活
5.当然
方法为:设法向量为( 常数,y,z),然后在要设的面里找两条不平行的线,假设向量为(a1,b1,c1)(a2,b2,c2)
根据垂直列出(a1常数+yb1+zc1=0 a2常数+yb2+zc2=0)设的常数怎么好算怎么来。根据这个方程组求告并斗法向量。
自己设的法向量不蔽帆用画
2.没听说过坐标用刻度尺量的,坐标怎么好袜磨算怎么设。无理式直接带根号就行,小数点建议用分式,否则很难算
3.判断已知向量方向吗?只要看一个参数就行了
4.法向量可以用题中给出的。如果没有自己设。
关于方向,如果证平行方向就无所谓了,如果求角,根据题设定方向。反正不能认准向上设,这个很灵活
5.当然
方法为:设法向量为( 常数,y,z),然后在要设的面里找两条不平行的线,假设向量为(a1,b1,c1)(a2,b2,c2)
根据垂直列出(a1常数+yb1+zc1=0 a2常数+yb2+zc2=0)设的常数怎么好算怎么来。根据这个方程组求告并斗法向量。
自己设的法向量不蔽帆用画
追问
坐标系上的点可以自己随便设的吗?1或2或3都行?
点的坐标知道后 线上的向量怎么求?是不是要根据方向 用末方向的点减去起始方向的点?
向量的方向要看哪个参数?
能留个联系方式教教我吗?我还有些小问题没理解。
追答
加我QQ号就可以
1.坐标系建好后,立体图形上坐标就基本确定了,分一下情况:
有些数据(主要是长度)已经给了,建系时可以直接用,不在随便设。
有些只给了关系,如AB=2BC,角度之类的,随便设个数就行。如果有这类题,一般求证垂直或角度,根长度没关系。
2.正解。
3.向量的方向就是从始方向指向末方向。如果说参数就是两个点坐标或向量坐标。正值指向正半轴。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询