数列题求解:
已知连续2n+1个正整数总和为a,且这些数中后n个数的平方和与前n个数的平方和之差为b.若a/b=11/60,则n的值为______________...
已知连续2n+1个正整数总和为a,且这些数中后n个数的平方和与前n个数的平方和之差为 b.若a/b=11/60,则n的值为______________
展开
展开全部
解:设中间的数,即第n+1个数为m,
则连续的数 为 m-n,m-n+1,......,m-1,m,m+1,。。。m+n-1,m+n
a=Sn=m*(2n+1)
b=(m+n)^2- (m-n)^2 +[m+(n-1)]^2-[m-(n-1)]^2+[m+(n-2)]^2-[m-(n-2)]^2 +.....+(m+1)^2 -(m-1)^2
= 4mn +4m(n-1)+4m(n-2)+....+4m*2+4m
=4mn*(n+1)/2
=2mn(n+1)
因为a/b=11/60
m*(2n+1)/[2mn(n+1)] =11/60
(2n+1)/[2n(n+1)] =11/60
22n^2+22n =120n+60
22n^2-98n-60=0
11n^2-49n-30=0
(n-5)(11n+6) =0
解得 n=5,或者n=-6/11(舍去)
所以n=5
则连续的数 为 m-n,m-n+1,......,m-1,m,m+1,。。。m+n-1,m+n
a=Sn=m*(2n+1)
b=(m+n)^2- (m-n)^2 +[m+(n-1)]^2-[m-(n-1)]^2+[m+(n-2)]^2-[m-(n-2)]^2 +.....+(m+1)^2 -(m-1)^2
= 4mn +4m(n-1)+4m(n-2)+....+4m*2+4m
=4mn*(n+1)/2
=2mn(n+1)
因为a/b=11/60
m*(2n+1)/[2mn(n+1)] =11/60
(2n+1)/[2n(n+1)] =11/60
22n^2+22n =120n+60
22n^2-98n-60=0
11n^2-49n-30=0
(n-5)(11n+6) =0
解得 n=5,或者n=-6/11(舍去)
所以n=5
展开全部
x+(x+1)+(x+2)+...+(x+2n)=(2n+1)x+n(2n+1)=a = (x+n)(2n+1)
(x+2n)^2+(x+2n-1)^2+...+(x+2n-n+1)^2 - [x^2+(x+1)^2+...+(x+n-1)^2] = b
= [(x+2n)^2-(x+n-1)^2] + [(x+2n-1)^2-(x+n-2)^2] + ... + [(x+2n-n+1)^2-(x+n-1-n+1)^2]
= (2x+3n-1)(n+1) + (2x+3n-1-2)(n+1) + ... + (2x+3n-1-2n+2)(n+1)
=(n+1)[(2x+3n-1)n - (2+4+...+2(n-1))]
=(n+1)[(2x+3n-1)n - n(n-1)]
=n(n+1)[2x+3n-1-n+1]
=n(n+1)(2x+2n)
=2n(n+1)(x+n),
11/60 = a/b = (x+n)(2n+1)/[2n(n+1)(x+n)] = (2n+1)/[2n(n+1)],
22n(n+1) = 60(2n+1), 11n(n+1) = 30(2n+1) = 60n + 30 = 11n^2 + 11n,
0=11n^2 - 49n - 30 = (11n+6)(n-5),
n=5
(x+2n)^2+(x+2n-1)^2+...+(x+2n-n+1)^2 - [x^2+(x+1)^2+...+(x+n-1)^2] = b
= [(x+2n)^2-(x+n-1)^2] + [(x+2n-1)^2-(x+n-2)^2] + ... + [(x+2n-n+1)^2-(x+n-1-n+1)^2]
= (2x+3n-1)(n+1) + (2x+3n-1-2)(n+1) + ... + (2x+3n-1-2n+2)(n+1)
=(n+1)[(2x+3n-1)n - (2+4+...+2(n-1))]
=(n+1)[(2x+3n-1)n - n(n-1)]
=n(n+1)[2x+3n-1-n+1]
=n(n+1)(2x+2n)
=2n(n+1)(x+n),
11/60 = a/b = (x+n)(2n+1)/[2n(n+1)(x+n)] = (2n+1)/[2n(n+1)],
22n(n+1) = 60(2n+1), 11n(n+1) = 30(2n+1) = 60n + 30 = 11n^2 + 11n,
0=11n^2 - 49n - 30 = (11n+6)(n-5),
n=5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询