化简求值:(2a-b+1)(2a-b-1)-(a+2b)(a-b),其中a,b满足la+b-3l+(ab+2)^2=0
2个回答
2013-03-28
展开全部
解:因为:la+b-3l+(ab+2)^2=0,且la+b-3l≥0,(ab+2)^2≥0,所以:la+b-3l=0,(ab+2)^2=0a+b-3=0,ab+2=0即:a+b=3,ab=-2 (2a-b+1)(2a-b-1)-(a+2b)(a-b)=[(2a-b)�0�5-1]-(a�0�5-ab+2ab-2b�0�5)
=4a�0�5+b�0�5-4ab-1-a�0�5-ab+2b�0�5
=3a�0�5+3b�0�5-5ab-1=3(a�0�5+b�0�5)-5ab-1=3[(a+b)�0�5-2ab)]-5ab-1=3(a+b)�0�5-11ab-1=3*3�0�5-11*(-2)-1=50
=4a�0�5+b�0�5-4ab-1-a�0�5-ab+2b�0�5
=3a�0�5+3b�0�5-5ab-1=3(a�0�5+b�0�5)-5ab-1=3[(a+b)�0�5-2ab)]-5ab-1=3(a+b)�0�5-11ab-1=3*3�0�5-11*(-2)-1=50
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询