高中数学:等差数列的性质!
判断是否存在数列{an}同时满足下列条件:(1){an}是等差数列。(2)数列{1/an}也是等差数列。如果存在,写在它的通项公式;如果不存在,请说明理由。...
判断是否存在数列{an}同时满足下列条件:(1){an}是等差数列。 (2)数列{1/an}也是等差数列。 如果存在,写在它的通项公式;如果不存在,请说明理由。
展开
5个回答
展开全部
看看这个能不能帮到你
等式右边少了两个括号
应该是:
1/(a1+d)-1/a1=1/(a1+2d)-1/(a1+d)
上述等式左边={1/an}的第二项减第一项,即1/a2-1/a1=1/(a1+d)-1/a1
等式右边={1/an}的第三项减第二项,即1/a3-1/a2=1/(a1+2d)-1/(a1+d)
{1/an}是等差数列,
所以1/a2-1/a1=1/a3-1/a2
即,1/(a1+d)-1/a1=1/(a1+2d)-1/(a1+d)
化简此等式,最终d^2=0
d=0
与题设矛盾。
必要条件的意思是等差数列的相邻两项之间的差都相等,且等于该等差数列的公差。这是等差数列的一个基本性质。
这道题里用到了这个基本性质,不代表其他关于等差数列的很多题都用得到。
等式右边少了两个括号
应该是:
1/(a1+d)-1/a1=1/(a1+2d)-1/(a1+d)
上述等式左边={1/an}的第二项减第一项,即1/a2-1/a1=1/(a1+d)-1/a1
等式右边={1/an}的第三项减第二项,即1/a3-1/a2=1/(a1+2d)-1/(a1+d)
{1/an}是等差数列,
所以1/a2-1/a1=1/a3-1/a2
即,1/(a1+d)-1/a1=1/(a1+2d)-1/(a1+d)
化简此等式,最终d^2=0
d=0
与题设矛盾。
必要条件的意思是等差数列的相邻两项之间的差都相等,且等于该等差数列的公差。这是等差数列的一个基本性质。
这道题里用到了这个基本性质,不代表其他关于等差数列的很多题都用得到。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
存在
an为常数列且an≠0,即an=K (K≠0)
例如:an=5,即数列{an}为5,5,5,5,5....... 为等差数列,差为0
则1/an=1/S,按上例,数列{1/an}为1/5,1/5,1/5,1/5,1/5....... 为等差数列,差为0
证明:
an为等差数列,则an+1-an=an-an-1,即2an=an+1+an-1 等式(1)
1/an为等差数列,同理可得,2/an=1/(an+1)+1/(an-1) 等式(2)
(1)*(2)得
4=(an+1)/(an-1)+(an-1)/(an+1)+2=[(an+1)²+(an-1)²]/(an+1*an-1)+2
可得:(an+1)²+(an-1)²-2(an+1)*(an-1)=(an+1-an-1)²=0
可得:an+1=an-1
所以an=a1=a2=a3=...,即an为常数列,且an≠0
an为常数列且an≠0,即an=K (K≠0)
例如:an=5,即数列{an}为5,5,5,5,5....... 为等差数列,差为0
则1/an=1/S,按上例,数列{1/an}为1/5,1/5,1/5,1/5,1/5....... 为等差数列,差为0
证明:
an为等差数列,则an+1-an=an-an-1,即2an=an+1+an-1 等式(1)
1/an为等差数列,同理可得,2/an=1/(an+1)+1/(an-1) 等式(2)
(1)*(2)得
4=(an+1)/(an-1)+(an-1)/(an+1)+2=[(an+1)²+(an-1)²]/(an+1*an-1)+2
可得:(an+1)²+(an-1)²-2(an+1)*(an-1)=(an+1-an-1)²=0
可得:an+1=an-1
所以an=a1=a2=a3=...,即an为常数列,且an≠0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2a(2)=a1+a3
2/a(2)=1/a1+1/a3
解方程:算式1乘以算式2:4=2+a3/a1+a1/a3
a1^2+a3^2=2a1
平方公式:(a1-a3)^2=0
a1=a3
所以d=0
也就是通项公式为 an=S S为常数
2/a(2)=1/a1+1/a3
解方程:算式1乘以算式2:4=2+a3/a1+a1/a3
a1^2+a3^2=2a1
平方公式:(a1-a3)^2=0
a1=a3
所以d=0
也就是通项公式为 an=S S为常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an = k ( k 常数 不等于0)
bn=1/an = 1/k
数列{1/an}也是等差数列
bn=1/an = 1/k
数列{1/an}也是等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询