已知数列{an}的通项公式为an=1/n(n+2)求前n项的和
Sn=1/(1×3)+1/(2×4)+1/(3×5)+1/(4×6)+···1/[(n-1)(n+1)]+1/[n(n+2)]=(1/2)[(1-1/3)+(1/2-1/...
Sn=1/(1×3)+1/(2×4)+1/(3×5)+1/(4×6)+···1/[(n-1)(n+1)]+1/[n(n+2)]
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)···(1/n-1/(n+2))]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
第三行的-1/(n+1)-1/(n+2)是怎么来的 展开
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)···(1/n-1/(n+2))]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
第三行的-1/(n+1)-1/(n+2)是怎么来的 展开
2个回答
展开全部
Sn=1/(1×3)+1/(2×4)+1/(3×5)+1/(4×6)+···1/[(n-1)(n+1)]+1/[n(n+2)]
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)···(1/n-1/(n+2))]
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...+(1/(n-2)-1/n)+(1/(n-1)-1/(n+1))+(1/n-1/(n+2))]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
可以看出来,都互相减掉了,剩下这两项。
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)···(1/n-1/(n+2))]
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...+(1/(n-2)-1/n)+(1/(n-1)-1/(n+1))+(1/n-1/(n+2))]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
可以看出来,都互相减掉了,剩下这两项。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询