已知二次函数y=x2+bx-3的图象经过点P(-2,5)
已知二次函数y=x2+bx-3的图象经过点P(-2,5)(1)求b的值并写出当1<x≤3时y的取值范围;(2)设P1(m,y1)、P2(m+1,y2)、P(m+2,y3)...
已知二次函数y=x2+bx-3的图象经过点P(-2,5)
(1)求b的值并写出当1<x≤3时y的取值范围;
(2)设P1(m,y1)、P2(m+1,y2)、P(m+2,y3)在这个二次函数的图象上,
①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由;
②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由. 展开
(1)求b的值并写出当1<x≤3时y的取值范围;
(2)设P1(m,y1)、P2(m+1,y2)、P(m+2,y3)在这个二次函数的图象上,
①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由;
②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由. 展开
2个回答
展开全部
解:(1)把(-2,5)代入二次函数y=x^2+bx-3得:5=4-2b-3,
∴b=-2,
y=x^2-2x-3=(x-1)^2-4,
∴抛物线的开口方向向上,对称轴是直线x=1,
把x=1代入得:y=-4,
把x=3代入得:y=0,
∴当1<x≤3时y的取值范围是-4<y≤0,
答:b的值是-2,当1<x≤3时y的取值范围是-4<y≤0.
(2)①答:当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
理由是当m=4时,P1(4,y1)、P2(5,y2)、P3(6,y3),
代入抛物线的解析式得:y1=5,y2=12,y3=21,
∵5+12<21,
∴当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
②理由是:∵把P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)代入y=x^2-2x-3=(x-1)^2-4得:
∴y1=(m-1)^2-4,y2=(m+1-1)^2-4,y3=(m+2-1)^2-4,
∴y1+y2-y3=(m-1)^2-4+(m+1-1)^2-4-[(m+2-1)^2-4]=(m-2)^2-8,
∵m≥5,
∴(m-2)^2-8>0,
∴y1+y2>y3,
根据三角形的三边关系定理:三角形的任意两边之和大于第三边(也可求出两小边的和大于第三边),
∴当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长.
∴b=-2,
y=x^2-2x-3=(x-1)^2-4,
∴抛物线的开口方向向上,对称轴是直线x=1,
把x=1代入得:y=-4,
把x=3代入得:y=0,
∴当1<x≤3时y的取值范围是-4<y≤0,
答:b的值是-2,当1<x≤3时y的取值范围是-4<y≤0.
(2)①答:当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
理由是当m=4时,P1(4,y1)、P2(5,y2)、P3(6,y3),
代入抛物线的解析式得:y1=5,y2=12,y3=21,
∵5+12<21,
∴当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
②理由是:∵把P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)代入y=x^2-2x-3=(x-1)^2-4得:
∴y1=(m-1)^2-4,y2=(m+1-1)^2-4,y3=(m+2-1)^2-4,
∴y1+y2-y3=(m-1)^2-4+(m+1-1)^2-4-[(m+2-1)^2-4]=(m-2)^2-8,
∵m≥5,
∴(m-2)^2-8>0,
∴y1+y2>y3,
根据三角形的三边关系定理:三角形的任意两边之和大于第三边(也可求出两小边的和大于第三边),
∴当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长.
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
2013-03-28
展开全部
(1)解:把(-2,5)代入二次函数y=x2+bx-3得:5=4-2b-3,
∴b=-2,
y=x2-2x-3=(x-1)2-4,
∴抛物线的开口方向向上,对称轴是直线x=1,
把x=1代入得:y=-4,
把x=3代入得:y=0,
∴当1<x≤3时y的取值范围是-4<y≤0,
答:b的值是-2,当1<x≤3时y的取值范围是-4<y≤0.
(2)①答:当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
理由是当m=4时,P1(4,y1)、P2(5,y2)、P(6,y3),
代入抛物线的解析式得:y1=5,y2=12,y3=21,
∵5+12<21,
∴当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
②理由是:(m-1)2-4+(m+1-1)2-4-[(m+2-1)2-4]=(m-2)2,
∵m≥5,
∴(m-2)2>0,
∴当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长
∴b=-2,
y=x2-2x-3=(x-1)2-4,
∴抛物线的开口方向向上,对称轴是直线x=1,
把x=1代入得:y=-4,
把x=3代入得:y=0,
∴当1<x≤3时y的取值范围是-4<y≤0,
答:b的值是-2,当1<x≤3时y的取值范围是-4<y≤0.
(2)①答:当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
理由是当m=4时,P1(4,y1)、P2(5,y2)、P(6,y3),
代入抛物线的解析式得:y1=5,y2=12,y3=21,
∵5+12<21,
∴当m=4时,y1、y2、y3不能作为同一个三角形三边的长.
②理由是:(m-1)2-4+(m+1-1)2-4-[(m+2-1)2-4]=(m-2)2,
∵m≥5,
∴(m-2)2>0,
∴当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询