数学:如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.
如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从...
如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.
(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式. 展开
(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式. 展开
2个回答
展开全部
同学您好:
很高兴为您解答!
分析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;
(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;
(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.
(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点
∴∠BAD=∠DAC=∠B=∠C=45°
∴AD=BD=DC
∵AE=CF∴△AED≌△CFD
(2)解:依题意有:FC=AE=x,
∵△AED≌△CFD
∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9
∴S△EDF=S四边形AEDF-S△AEF=9-1/2(6-x)x=1/2X²-3x+9
∴y=1/2
X²-3x+9;
(3)解:依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°
∴∠DAF=∠DBE=135°
∴△ADF≌△BDE
∴S△ADF=S△BDE
∴S△EDF=S△EAF+S△ADB
=1/2(x-6)x+9=1/2x2-3x+9
∴y=1/2x2-3x+9.
本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.
很高兴为您解答,祝你学习进步!【数学的奥义】团队为您答题。有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!如果有其他需要帮助的题目,您可以求助我。谢谢!!
很高兴为您解答!
分析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;
(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;
(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.
(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点
∴∠BAD=∠DAC=∠B=∠C=45°
∴AD=BD=DC
∵AE=CF∴△AED≌△CFD
(2)解:依题意有:FC=AE=x,
∵△AED≌△CFD
∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9
∴S△EDF=S四边形AEDF-S△AEF=9-1/2(6-x)x=1/2X²-3x+9
∴y=1/2
X²-3x+9;
(3)解:依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°
∴∠DAF=∠DBE=135°
∴△ADF≌△BDE
∴S△ADF=S△BDE
∴S△EDF=S△EAF+S△ADB
=1/2(x-6)x+9=1/2x2-3x+9
∴y=1/2x2-3x+9.
本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.
很高兴为您解答,祝你学习进步!【数学的奥义】团队为您答题。有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!如果有其他需要帮助的题目,您可以求助我。谢谢!!
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
1、证明:由题可知 AB=AC,∠BAC=90°
∴△ABC为等腰直角三角形
又 ∵D为BC的中点 BC=DC
∴ AD为BD的中垂线 且为∠BAC的角平分线 且AD=1/2BD DC=AD
∵E、F分别是AB、AC上的点,且AE=CF
又∵ AD为∠BAC的角平分线
∴∠BAD=∠CAD=45°
又∵∠C=45°
即:△AED≌△CFD
(2)y=½x²-3x+9
(3)y=½x²+3x+9
因为三角形aed与dec全等,de=df,设ae=cf=x,af=6-x,因为ef=de2+df2=2*de2=x2+(6-x)2,化简后得S△def=de*df=de2=y=½x²-3x+9
第三问同理
∴△ABC为等腰直角三角形
又 ∵D为BC的中点 BC=DC
∴ AD为BD的中垂线 且为∠BAC的角平分线 且AD=1/2BD DC=AD
∵E、F分别是AB、AC上的点,且AE=CF
又∵ AD为∠BAC的角平分线
∴∠BAD=∠CAD=45°
又∵∠C=45°
即:△AED≌△CFD
(2)y=½x²-3x+9
(3)y=½x²+3x+9
因为三角形aed与dec全等,de=df,设ae=cf=x,af=6-x,因为ef=de2+df2=2*de2=x2+(6-x)2,化简后得S△def=de*df=de2=y=½x²-3x+9
第三问同理
来自:求助得到的回答
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询