求不定积分∫inx/x根号(1+inx)dx 求秒杀
2个回答
展开全部
∫lnx/x√(1+lnx)dx
=∫lnxdlnx/√(1+lnx)
令√(1+lnx)=t
1+lnx=t^2
lnx=t^2-1
dlnx=2tdt
原式化为
=∫(t^2-1)*2tdt/t
=2∫(t^2-1)dt
=2t^3/3-2t+C
=2(√(1+lnx))^3 / 3-2√(1+lnx) +C
=∫lnxdlnx/√(1+lnx)
令√(1+lnx)=t
1+lnx=t^2
lnx=t^2-1
dlnx=2tdt
原式化为
=∫(t^2-1)*2tdt/t
=2∫(t^2-1)dt
=2t^3/3-2t+C
=2(√(1+lnx))^3 / 3-2√(1+lnx) +C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询