已知[1+tana]/[1-tana]=3+2根号2,求[(sina+cosa)^2-1]/[cota-sinacosa]的值
1个回答
展开全部
(1+tanA/(1-tanA)=3+2根号2.
1+tanA=3+2根号2-(3+2根号2)tanA
(4+2根号2)tanA=2+2根号2
tanA=根号2/2
[(sinA+cosA)^2-1]/(cotA-sinAcosA)
=(1+2sinAcosA-1)/(cotA-sinAcosA)
=2sinAcosA/(cosA/sinA-sinAcosA)
=2sinA/(1/sinA-sinA)
=2(sinA)^2/[1-(sinA)^2]
=2(sinA)^2/(cosA)^2
=2(tanA)^2
=2*1/2
=1
1+tanA=3+2根号2-(3+2根号2)tanA
(4+2根号2)tanA=2+2根号2
tanA=根号2/2
[(sinA+cosA)^2-1]/(cotA-sinAcosA)
=(1+2sinAcosA-1)/(cotA-sinAcosA)
=2sinAcosA/(cosA/sinA-sinAcosA)
=2sinA/(1/sinA-sinA)
=2(sinA)^2/[1-(sinA)^2]
=2(sinA)^2/(cosA)^2
=2(tanA)^2
=2*1/2
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询