如图,抛物线y=x2-bx-5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,

点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF的解析式;(3)在直线AF上是否存在点P,使△... 点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.
(1)求抛物线的解析式;
(2)求直线AF的解析式;
(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.
展开
甜芯927
2013-04-29 · TA获得超过1265个赞
知道答主
回答量:100
采纳率:0%
帮助的人:30.3万
展开全部
解:(1)∵y=x2-bx-5,
∴|OC|=5,
∵|OC|:|OA|=5:1,
∴|OA|=1,
即A(-1,0),…(2分)
把A(-1,0)代入y=x2-bx-5得
(-1)2 b-5=0,
解得b=4,
抛物线的解析式为y=x2-4x-5;…(4分)

(2)∵点C与点F关于对称轴对称,C(0,-5),设F(x0,-5),
∴x02-4x0-5=-5,
解得x0=0(舍去),或x0=4,
∴F(4,-5),…(6分)
∴对称轴为x=2,
设直线AF的解析式为y=kx b,
把F(4,-5),A(-1,0),代入y=kx b,

4k b=-5
-k b=0

解得
k=-1
b=-1

所以,直线FA的解析式为y=-x-1;…(8分)

(3)存在.…(9分)
理由如下:①当∠FCP=90°时,点P与点E重合,
∵点E是直线y=-x-1与y轴的交点,
∴E(0,-1),
∴P(0,-1),…(10分)
②当CF是斜边时,过点C作CP⊥AF于点P(x1,-x1-1),
∵∠ECF=90°,E(0,-1),C(0,-5),F(4,-5),
∴CE=CF,
∴EP=PF,
∴CP=PF,
∴点P在抛物线的对称轴上,…(11分)
∴x1=2,
把x1=2代入y=-x-1,得
y=-3,
∴P(2,-3),
综上所述,直线AF上存在点P(0,-1)或(2,-3)使△CFP是直角三角形.…(12分)
茶烟竹韵风声
2013-03-31 · TA获得超过1247个赞
知道小有建树答主
回答量:741
采纳率:0%
帮助的人:237万
展开全部

由于时间关系给个函数图,具体请教数学老师讲



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式