VB怎么写反正弦和反余弦函数?
4个回答
推荐于2018-05-10 · 知道合伙人教育行家
sunzhenwei114
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:776
获赞数:6174
毕业于阜新矿业学院基础部数学师范专业,擅长初高中数学教学,熟练操作excel,信息技术与数学整合是特长。
向TA提问 私信TA
关注
展开全部
没有直接的函数可以求出反正弦和反余弦,可以用牛顿迭代法求出,原理很简单
Secant(正割)
Sec(X)= 1/Cos(X)
Cosecant(余割)
Cosec(X)= 1/Sin(X)
Cotangent(余切)
Cotan(X)= 1/Tan(X)
Inverse Sine (反正弦)
Arcsin(X)= Atn(X / Sqr(-X * X + 1))
Inverse Cosine (反余弦)
Arccos(X) =Atn(-X /Sqr(-X * X + 1))+ 2 * Atn(1)
Inverse Secant (反正割)
Arcsec(X) = Atn(X / Sqr(X * X - 1))+ Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant (反余割)
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent (反余切)
Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine (双曲正弦)
HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine (双曲余弦)
HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent (双曲正切)
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant (双曲正割)
HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割)
HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切)
HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦)
HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦)
HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切)
HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割)
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant (反双曲余割)
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent (反双曲余切)
HArccotan(X) = Log((X + 1) / (X - 1)) / 2
以 N 为底的对数 LogN(X) = Log(X) / Log(N)
Secant(正割)
Sec(X)= 1/Cos(X)
Cosecant(余割)
Cosec(X)= 1/Sin(X)
Cotangent(余切)
Cotan(X)= 1/Tan(X)
Inverse Sine (反正弦)
Arcsin(X)= Atn(X / Sqr(-X * X + 1))
Inverse Cosine (反余弦)
Arccos(X) =Atn(-X /Sqr(-X * X + 1))+ 2 * Atn(1)
Inverse Secant (反正割)
Arcsec(X) = Atn(X / Sqr(X * X - 1))+ Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant (反余割)
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent (反余切)
Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine (双曲正弦)
HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine (双曲余弦)
HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent (双曲正切)
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant (双曲正割)
HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割)
HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切)
HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦)
HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦)
HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切)
HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割)
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant (反双曲余割)
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent (反双曲余切)
HArccotan(X) = Log((X + 1) / (X - 1)) / 2
以 N 为底的对数 LogN(X) = Log(X) / Log(N)
意法半导体(中国)投资有限公司
2023-06-12 广告
2023-06-12 广告
单片机,即单片微控制器,也称为单片微型计算机,是将中央处理器(CPU)、存储器(ROM,RAM)、输入/输出接口和其他功能部件集成在一块 在一个小块的集成电路上,从而实现对整个电路或系统的数字式控制。单片机不是完成某一个逻辑功能的芯片,而是...
点击进入详情页
本回答由意法半导体(中国)投资有限公司提供
2013-04-01
展开全部
Secant(正割)
Sec(X)= 1/Cos(X)
Cosecant(余割)
Cosec(X)= 1/Sin(X)
Cotangent(余切)
Cotan(X)= 1/Tan(X)
Inverse Sine (反正弦)
Arcsin(X)= Atn(X / Sqr(-X * X + 1))
Inverse Cosine (反余弦)
Arccos(X) =Atn(-X /Sqr(-X * X + 1))+ 2 * Atn(1)
Inverse Secant (反正割)
Arcsec(X) = Atn(X / Sqr(X * X - 1))+ Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant (反余割)
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent (反余切)
Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine (双曲正弦)
HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine (双曲余弦)
HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent (双曲正切)
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant (双曲正割)
HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割)
HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切)
HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦)
HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦)
HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切)
HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割)
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant (反双曲余割)
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent (反双曲余切)
HArccotan(X) = Log((X + 1) / (X - 1)) / 2
以 N 为底的对数 LogN(X) = Log(X) / Log(N)
干脆把这些全部给你了吧,以后用得上的
Sec(X)= 1/Cos(X)
Cosecant(余割)
Cosec(X)= 1/Sin(X)
Cotangent(余切)
Cotan(X)= 1/Tan(X)
Inverse Sine (反正弦)
Arcsin(X)= Atn(X / Sqr(-X * X + 1))
Inverse Cosine (反余弦)
Arccos(X) =Atn(-X /Sqr(-X * X + 1))+ 2 * Atn(1)
Inverse Secant (反正割)
Arcsec(X) = Atn(X / Sqr(X * X - 1))+ Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant (反余割)
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent (反余切)
Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine (双曲正弦)
HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine (双曲余弦)
HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent (双曲正切)
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant (双曲正割)
HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割)
HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切)
HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦)
HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦)
HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切)
HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割)
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant (反双曲余割)
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent (反双曲余切)
HArccotan(X) = Log((X + 1) / (X - 1)) / 2
以 N 为底的对数 LogN(X) = Log(X) / Log(N)
干脆把这些全部给你了吧,以后用得上的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有直接的函数可以求出反正弦和反余弦,可以用牛顿迭代法求出,原理很简单。secant(正割)。sec(x)= 1/cos(x)。cosecant(余割)。cosec(x)= 1/sin(x)。cotangent(余切)。cotan(x)= 1/tan(x)。inverse sine (反正弦)。arcsin(x)= atn(x / sqr(-x * x + 1))。inverse cosine (反余弦)。arccos(x) =atn(-x /sqr(-x * x + 1))+ 2 * atn(1)。inverse secant (反正割)。arcsec(x) = atn(x / sqr(x * x - 1))+ sgn((x) - 1) * (2 * atn(1))。inverse cosecant (反余割)。arccosec(x) = atn(x / sqr(x * x - 1)) + (sgn(x) - 1) * (2 * atn(1))。inverse cotangent (反余切)。arccotan(x) = atn(x) + 2 * atn(1)。hyperbolic sine (双曲正弦)。hsin(x) = (exp(x) - exp(-x)) / 2。hyperbolic cosine (双曲余弦)。hcos(x) = (exp(x) + exp(-x)) / 2。hyperbolic tangent (双曲正切)。htan(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))。hyperbolic secant (双曲正割)。hsec(x) = 2 / (exp(x) + exp(-x))。hyperbolic cosecant(双曲余割)。hcosec(x) = 2 / (exp(x) - exp(-x))。hyperbolic cotangent(双曲余切)。hcotan(x) = (exp(x) + exp(-x)) / (exp(x) - exp(-x))。inverse hyperbolic sine(反双曲正弦)。harcsin(x) = log(x + sqr(x * x + 1))。inverse hyperbolic cosine(反双曲余弦)。harccos(x) = log(x + sqr(x * x - 1))。inverse hyperbolic tangent(反双曲正切)。harctan(x) = log((1 + x) / (1 - x)) / 2。inverse hyperbolic secant(反双曲正割)。harcsec(x) = log((sqr(-x * x + 1) + 1) / x)。inverse hyperbolic cosecant (反双曲余割)。harccosec(x) = log((sgn(x) * sqr(x * x + 1) + 1) / x)。inverse hyperbolic cotangent (反双曲余切)。harccotan(x) = log((x + 1) / (x - 1)) / 2。以 n 为底的对数 logn(x) = log(x) / log(n)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有直接的函数可以求出反正弦和反余弦,可以用牛顿迭代法求出,原理很简单,你百度搜一下,很多的
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询